Under what conditions do quantum systems thermalize?

Christian Gogolin

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin

2014-01-20 COST conference

Old questions and new results

How do quantum mechanics and statistical mechanics go together?

Subsystem,
$$\mathcal{H}_S, \mathcal{H}_S$$
 Bath, $\mathcal{H}_B, \mathcal{H}_B$
$$d_S = \dim(\mathcal{H}_S) \qquad \qquad d_B \gg d_S$$

Subsystem,
$$\mathcal{H}_S, \mathscr{H}_S$$
 Bath, $\mathcal{H}_B, \mathscr{H}_B$
$$d_S = \dim(\mathcal{H}_S) \qquad \qquad d_B \gg d_S$$

Subsystem,
$$\mathcal{H}_S, \mathcal{H}_S$$
 Bath, $\mathcal{H}_B, \mathcal{H}_B$
$$d_S = \dim(\mathcal{H}_S) \qquad \qquad d_B \gg d_S$$

$$\psi_t^S = \text{Tr}_B[\psi_t]$$

$$\mathscr{H} = \mathscr{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathscr{H}_B + \mathscr{H}_{SB} \qquad \frac{d\psi_t}{dt} = \mathrm{i} \left[\psi_t, \mathscr{H} \right]$$

Theorem 1 (Equilibration on average [3])

If \mathscr{H} has non-degenerate energy gaps, then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$ there exists a ω^S such that:

$$\overline{\mathcal{D}(\psi_t^S,\omega^S)} \leq \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

- [1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
- [2] P. Reimann, PRL 101, 190403 (2008).
- [3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
- [4] A. J. Short, T. C. Farrelly, NJP 14, 013063 (2012).
- [5] P. Reimann and M. Kastner, NJP 14, 043020 (2012).

Non-degenerate energy gaps

Theorem

If \mathscr{H} has

 ${\mathscr H}$ has non–degenerate energy gaps iff:

$$E_k - E_l = E_m - E_n$$

$$\Longrightarrow k = l \wedge m = n \quad \lor \quad k = m \wedge l = n$$

Intuition: Sufficient for ${\mathscr H}$ to be fully interactive

$$\mathcal{H} \neq \mathcal{H}_1 \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_2$$

[1] M. Cram

2 (2008).

 $\langle \psi_0 \rangle$

- [2] P. Reimann, PRL 101, 190403 (2008).
- [3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
- [4] A. J. Short, T. C. Farrelly, NJP 14, 013063 (2012).
- [5] P. Reimann and M. Kastner, NJP 14, 043020 (2012).

Theorem 1 (Equilibration on average [3])

If \mathscr{H} has non-degenerate energy gaps, then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$ there exists a ω^S such that:

$$\overline{\mathcal{D}(\psi_t^S,\omega^S)} \leq \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

- [1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
- [2] P. Reimann, PRL 101, 190403 (2008).
- [3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
- [4] A. J. Short, T. C. Farrelly, NJP 14, 013063 (2012).
- [5] P. Reimann and M. Kastner, NJP 14, 043020 (2012).

Theorem 1 (Equilibration on average [3])

If *H* has Effective dimension there exis

$$d^{\text{eff}} = \frac{1}{\sum_{k} |\langle E_{k} | \psi_{0} \rangle|^{4}}.$$

Intuition: Dimension of supporting energy subspace

- [1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
- P. Reimann, PRL 101, 190403 (2008).
- [3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
- [4] A. J. Short, T. C. Farrelly, NJP 14, 013063 (2012).
- [5] P. Reimann and M. Kastner, NJP 14, 043020 (2012).

Theorem 1 (Equilibration on average [3])

If \mathscr{H} has non-degenerate energy gaps, then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$ there exists a ω^S such that:

$$\overline{\mathcal{D}(\psi_t^S,\omega^S)} \leq \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

 \implies If $d^{\text{eff}} \gg d_S^2$ then ψ_t^S equilibrates on average.

- [1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
- [2] P. Reimann, PRL 101, 190403 (2008).
- [3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
- [4] A. J. Short, T. C. Farrelly, NJP 14, 013063 (2012).
- [5] P. Reimann and M. Kastner, NJP 14, 043020 (2012).

Maximum entropy principle

Theorem 2 (Maximum entropy principle [6])

If $\operatorname{Tr}[A \psi_t]$ equilibrates on average, it equilibrates towards its time average

$$\overline{\operatorname{Tr}(A\,\psi_t)} = \operatorname{Tr}(A\,\overline{\psi_t}) = \operatorname{Tr}(A\,\omega),$$
$$\omega := \sum_k \Pi_k\,\psi_0\,\Pi_k$$

where

is the dephased state that maximizes the von Neumann entropy, given all conserved quantities (Π_k are the energy eigen projectors).

^[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).

ne

given

Maximu

Time averaging

Theorem If ${\rm Tr}[A\,\psi]$ average

where

is the dep

[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).

Maximum entropy principle

Theorem 2 (Maximum entropy principle [6])

If $\operatorname{Tr}[A \psi_t]$ equilibrates on average, it equilibrates towards its time average

$$\overline{\operatorname{Tr}(A\,\psi_t)} = \operatorname{Tr}(A\,\overline{\psi_t}) = \operatorname{Tr}(A\,\omega),$$
$$\omega := \sum_k \Pi_k\,\psi_0\,\Pi_k$$

where

is the dephased state that maximizes the von Neumann entropy, given all conserved quantities (Π_k are the energy eigen projectors).

⇒ Maximum entropy principle from pure quantum dynamics.

^[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).

Maximum entropy principle

Theorem 2 (Maximum entropy principle [6])

If $\operatorname{Tr}[A \psi_t]$ equilibrates on average, it equilibrates towards its time average in a constant and a constant and average in a constant and average in a constant and a constant

where

Interesting open questions:

- Do we really need all (exponentially many) conserved quantities?
- If not, then which?

is the

■ Does this depend on integrability of the model?

■ What is the relation to the GGE?

iven

⇒ Maximum entropy principle from pure quantum dynamics.

Thermalization

Thermalization is a complicated process

Thermalization implies:

- **1** Equilibration [1, 2, 3, 7]
- 2 Subsystem initial state independence [6, 8]
- 3 Weak bath state dependence [9]
- 4 Diagonal form of the subsystem equilibrium state [10]
- 5 Gibbs state $\omega^S = \operatorname{Tr}_B(\omega) \approx \mathrm{e}^{-\beta \,\,\mathscr{H}_S}$ [9]

^[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).

^[2] P. Reimann, PRL 101, 190403 (2008).

^[3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).

^[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).

^[7] J. Gemmer, M. Michel, and G. Mahler, Springer (2009).[8] A. Hutter and S. Wehner, PRA 87, 012121 (2013).

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).

^[10] C. Gogolin, PRE 81, 051127 (2010).

Thermalization and quantum integrability

There is a common belief in the literature [11, 12, 13, 14, 15] ...

```
\begin{array}{ccc} \text{Non-integrable} & \Longrightarrow & \text{Thermalization} \\ \text{Integrable} & \Longrightarrow & \text{No thermalization} \end{array}
```

^[11] C. Kollath et. al PRL 98, 180601 (2007).

^[12] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98, 210405 (2007).

^[13] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

^[14] M. C. Banuls, J. I. Cirac, and M. B. Hastings, PRL 106, 050405 (2011).

^[15] M. Rigol, PRL 103, 100403 (2009).

Thermalization and quantum integrability

There is a common belief in the literature [11, 12, 13, 14, 15] ...

```
egin{array}{lll} {\sf Non-integrable} & \Longrightarrow & {\sf Thermalization} \ & \Longrightarrow & {\sf No thermalization} \ \end{array}
```

... but there are problems.

^[11] C. Kollath et. al PRL 98, 180601 (2007).

^[12] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98, 210405 (2007).

^[13] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

^[14] M. C. Banuls, J. I. Cirac, and M. B. Hastings, PRL 106, 050405 (2011).

^[15] M. Rigol, PRL 103, 100403 (2009).

Notions of (non-)integrability

A system is with n degrees of freedom is integrable if

- there exist n (local) conserved mutually commuting linearly/algebraically independent operators.
- the system is integrable by the Bethe ansatz.
- the system exhibits nondiffractive scattering.
- . . .
- the quantum many-body system is exactly solvable in some way.

Notions of (non-)integrability

A system is with n degrees of freedom is integrable if

- lacktriangleright there exist n (local) conserved mutually commuting linearly/algebraically independent operators.
- the system is integrable by the Bethe ansatz.
- the system exhibits nondiffractive scattering.
- . . .
- the quantum many-body system is exactly solvable in some way.

And non-integrable otherwise?

Notions of (non-)integrability

A system is with n degrees of freedom is integrable if

- there exist *n* (local) conserved mutually commuting linearly/algebraically independent operators.
- the system is integrable by the Bethe ansatz.
- the system exhibits nondiffractive scattering.
- . . .
- the quantum many-body system is exactly solvable in some way.

And non-integrable otherwise?

Lack of imagination?

See also [16]: J.-S. Caux and J. Mossel, JSM 2011, 02 (2011).

Result (Theorem 1 and 2 in [6]):

- Too little (geometric) entanglement in the energy eigenbasis prevents subsystem initial state independence.
- This can happen even in non-integrable systems.

Result (Theorem 1 and 2 in [6]):

- Too little (geometric) entanglement in the energy eigenbasis prevents subsystem initial state independence.
- This can happen even in non-integrable systems.

^[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).

The model:

 $\mbox{Spin-}1/2$ XYZ chain with random coupling and on-site field.

$$\mathcal{H} = \sum_{i=1}^{n} h_i \, \sigma_i^Z + \sum_{i=1}^{n-1} \vec{b}_i \cdot \vec{\sigma}_i^{\text{NN}}$$

1

14

The model:

Spin-1/2 XYZ chain with random coupling and on-site field.

$$\mathcal{H} = \sum_{i=1}^{n} h_i \, \sigma_i^Z + \sum_{i=1}^{n-1} \vec{b}_i \cdot \vec{\sigma}_i^{\text{NN}}$$

Interesting open questions:

- What is the relation to Anderson localization?
- Can this also happen in translation invariant systems?
- Why is integrability a useful concept despite the ambiguity?

 $|\psi$

Conditions for thermalization

Two ways to prove thermalization

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).[17] T. N. Ikeda, Y. Watanabe, and M. Ueda, PRE 84, 2 (2011).

Two ways to prove thermalization

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).[17] T. N. Ikeda, Y. Watanabe, and M. Ueda, PRE 84, 2 (2011).

Structure of the argument

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).

^[18] S. Goldstein, J. Lebowitz, R. Tumulka, and N. Zanghì, PRL 96, 050403 (2006).

$$\begin{split} &\|\,\mathscr{H}_{SB}\,\|_{\infty} \gg \mathrm{gaps}(\mathscr{H}_0) \\ &\|\,\mathscr{H}_{SB}\,\|_{\infty} \ll k_B T \ll \Delta \end{split} \qquad \begin{matrix} |\langle E_k|\psi_0|E_k\rangle|^2 \\ &\uparrow \text{of } B \end{matrix}$$

(Kinematic) Almost all pure states from a microcanonical subspace $[E,E+\Delta]$ are locally close to a Gibbs state.

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).

The result

$$\| \mathcal{H}_{SB} \|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_0)$$
 density of states
$$\| \mathcal{H}_{SB} \|_{\infty} \ll k_B T \ll \Delta$$

$$\downarrow \Delta$$
 of B

 \implies "Theorem" 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\square,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).

The result

$$\|\,\mathscr{H}_{SB}\,\|_{\infty} \gg \operatorname{gaps}(\mathscr{H}_0) \ \uparrow^{|\langle E_k|\psi_0|E_k\rangle|^2} \ \stackrel{\text{density of states}}{\uparrow^{\circ}} \ \downarrow^{\circ} \ \downarrow^{\circ$$

 \implies "Theorem" 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\square,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).

The result

$$\|\,\mathscr{H}_{SB}\,\|_{\infty} \gg \operatorname{gaps}(\mathscr{H}_0) \ \ \downarrow^{|\langle E_k|\psi_0|E_k\rangle|^2} \ \ \text{density of states}$$

$$\|\,\mathscr{H}_{SB}\,\|_{\infty} \ll k_B T \ll \Delta \ \ \downarrow^{\triangle} \ \ E \ \ \downarrow^{\triangle} \ \ E \ \ \downarrow^{\triangle} \ \ E$$

 \implies "Theorem" 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\square,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

^[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).

Collaborators

Arnau Riera

Jens Eisert

Markus P. Müller

References

Thank you for your attention!

→ slides: www.cgogolin.de

- M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne Physical Review Letters 100 (2008) 30602.
- [2] P. Reimann
 Physical Review Letters 101 (2008) 190403.
- [3] N. Linden, S. Popescu, A. Short, and A. Winter Physical Review E 79 (2009) 61103.
- [4] A. J. Short and T. C. Farrelly New Journal of Physics 14 (2012) 013063.
- [5] P. Reimann and M. KastnerNew Journal of Physics 14 (2012) 043020.
- [6] C. Gogolin, M. P. Müller, and J. Eisert Physical Review Letters 106 (2011) 40401.
- J. Gemmer, M. Michel, and G. Mahler,
 Quantum Thermodynamics, vol. 784 of Lecture
 Notes in Physics, Springer Berlin Heidelberg 2009.
- [8] A. Hutter and S. Wehner Physical Review A 87 (2013) 012121.
- [9] A. Riera, C. Gogolin, and J. Eisert Physical Review Letters 108 (2012) 080402.

- [10] C. Gogolin Physical Review E 81 (2010) 051127.
- [11] C. Kollath, A. Läuchli, and E. Altman Physical Review Letters 98 (2007) no. 18, 180601.
- [12] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu Physical Review Letters 98 (2007) 210405.
- [13] M. Rigol, V. Dunjko, and M. Olshanii Nature 452 (2008) 854–858.
- [14] M. C. Bañuls, J. I. Cirac, and M. B. Hastings Physical Review Letters 106 (2011) 050405.
- [15] M. Rigol Physical Review Letters 103 (2009) 100403.
- [16] J.-S. Caux and J. Mossel Journal of Statistical Mechanics: Theory and Experiment 2011 (2011) P02023.
- [17] T. N. Ikeda, Y. Watanabe, and M. Ueda Physical Review E 84 (2011) 021130.
- [18] S. Goldstein, J. Lebowitz, R. Tumulka, and N. Zanghì Physical Review Letters 96 (2006) 50403.