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Old questions and new results

How do quantum mechanics and
statistical mechanics go together?



Conditions for equilibration and thermalization | Introductory words 3 / 19

Understanding thermalization



Conditions for equilibration and thermalization | Introductory words 3 / 19

Understanding thermalization



Conditions for equilibration and thermalization | Introductory words 3 / 19

Understanding thermalization

t

Yes

t

No

Equilibrate?



Conditions for equilibration and thermalization | Introductory words 3 / 19

Understanding thermalization

t

T

Yes

T

No

Yes

t

No

Equilibrate?

Thermalize?



Conditions for equilibration and thermalization | Setup 4 / 19

Setup



Conditions for equilibration and thermalization | Setup 5 / 19

Setup

Bath, HB,H B

dB � dS

Subsystem, HS ,H S

dS = dim(HS)

ψSt = TrB[ψt]

H = H S ⊗1+ 1⊗H B + H SB
dψt
dt

= i [ψt,H ]
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Equilibration

Theorem 1 (Equilibration on average [3])

If H has non-degenerate energy gaps, then for every ψ0 = |ψ0〉〈ψ0|
there exists a ωS such that:

D(ψSt , ω
S) ≤ 1

2

√
d2
S

deff
.

=⇒ If deff � d2
S then ψSt equilibrates on average.

[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
[2] P. Reimann, PRL 101, 190403 (2008).
[3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
[4] A. J. Short, T. C. Farrelly, NJP 14, 013063 (2012).
[5] P. Reimann and M. Kastner, NJP 14, 043020 (2012).
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Non-degenerate energy gaps

H has non–degenerate energy gaps iff:

Ek − El = Em − En

=⇒ k = l ∧m = n ∨ k = m ∧ l = n

E6=

Intuition: Sufficient for H to be fully interactive

H 6= H 1⊗1 + 1⊗H 2
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Effective dimension

deff =
1∑

k |〈Ek|ψ0〉|4
.

Intuition: Dimension of supporting energy subspace
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [6])

If Tr[Aψt] equilibrates on average, it equilibrates towards its time
average

Tr(Aψt) = Tr(Aψt) = Tr(Aω),

where ω :=
∑
k

Πk ψ0 Πk

is the dephased state that maximizes the von Neumann entropy, given
all conserved quantities (Πk are the energy eigen projectors).

⇒ Maximum entropy principle from pure quantum dynamics.

[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).
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Time averaging

ψ0 =

ψ0 7→ ω is a pinching ⇒ ω maximizes entropy
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Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?
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Thermalization
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Thermalization is a complicated process

Thermalization implies:

1 Equilibration [1, 2, 3, 7]

2 Subsystem initial state independence [6, 8]

3 Weak bath state dependence [9]

4 Diagonal form of the subsystem equilibrium state [10]

5 Gibbs state ωS = TrB(ω) ≈ e−β H S [9]

[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
[2] P. Reimann, PRL 101, 190403 (2008).
[3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).
[7] J. Gemmer, M. Michel, and G. Mahler, Springer (2009).
[8] A. Hutter and S. Wehner, PRA 87, 012121 (2013).
[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
[10] C. Gogolin, PRE 81, 051127 (2010).
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Thermalization and quantum integrability

There is a common belief in the literature [11, 12, 13, 14, 15] . . .

Non-integrable =⇒ Thermalization
Integrable =⇒ No thermalization

. . . but there are problems.

[11] C. Kollath et. al PRL 98, 180601 (2007).
[12] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98, 210405 (2007).
[13] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
[14] M. C. Banuls, J. I. Cirac, and M. B. Hastings, PRL 106, 050405 (2011).
[15] M. Rigol, PRL 103, 100403 (2009).
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Notions of (non-)integrability

A system is with n degrees of freedom is integrable if

there exist n (local) conserved mutually commuting
linearly/algebraically independent operators.

the system is integrable by the Bethe ansatz.

the system exhibits nondiffractive scattering.

. . .

the quantum many-body system is exactly solvable in some way.

And non-integrable otherwise?

Lack of imagination?

See also [16]: J.-S. Caux and J. Mossel, JSM 2011, 02 (2011).
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Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [6]):

Too little (geometric) entanglement in the energy
eigenbasis prevents subsystem initial state independence.

This can happen even in non-integrable systems.

S B

|ψ1〉

|ψ2〉
t

S B

[6] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011).
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The model:

Spin-1/2 XYZ chain with random coupling and on-site field.

H =
n∑
i=1

hi σ
Z
i +

n−1∑
i=1

~bi ·~σNN
i

Interesting open questions:

What is the relation to Anderson localization?

Can this also happen in translation invariant systems?

Why is integrability a useful concept despite the
ambiguity?
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Conditions for thermalization
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Two ways to prove thermalization

Thermalization

|Ek〉 {〈Ek|ψ0|Ek〉}

ETH Our result [9]

Assumptions about:

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
[17] T. N. Ikeda, Y. Watanabe, and M. Ueda, PRE 84, 2 (2011).
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ETH Our result [9]
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Structure of the argument

+

Classical level counting à
la Goldstein [18] with
no interaction
H 0 = H S ⊗1+1⊗H B

Perturbation theory for
realistic weak coupling [9]
‖H SB ‖∞ � kB T

Typicality
arguments

Kinematic

Equilibration
results

Dynamic

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
[18] S. Goldstein, J. Lebowitz, R. Tumulka, and N. Zangh̀ı, PRL 96, 050403 (2006).
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The result

‖H SB ‖∞ � gaps(H 0)
‖H SB ‖∞ � kBT � ∆

E

|〈Ek|ψ0|Ek〉|2

[ ]∆
E

density of states
of B

[ ]

E6=

=⇒ “Theorem” 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + ∆] are locally close to a Gibbs state.

(Dynamic) All initial states ψu,0 locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).



Conditions for equilibration and thermalization | Conditions for thermalization 17 / 19

The result

‖H SB ‖∞ � gaps(H 0)
‖H SB ‖∞ � kBT � ∆

E

|〈Ek|ψ0|Ek〉|2

[ ]∆
E

density of states
of B

[ ] E6=

=⇒ “Theorem” 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + ∆] are locally close to a Gibbs state.

(Dynamic) All initial states ψu,0 locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).



Conditions for equilibration and thermalization | Conditions for thermalization 17 / 19

The result

‖H SB ‖∞ � gaps(H 0)
‖H SB ‖∞ � kBT � ∆

E

|〈Ek|ψ0|Ek〉|2

[ ]∆
E

density of states
of B

[ ] E6=

=⇒ “Theorem” 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + ∆] are locally close to a Gibbs state.

(Dynamic) All initial states ψu,0 locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).



Conditions for equilibration and thermalization | Conditions for thermalization 17 / 19

The result

‖H SB ‖∞ � gaps(H 0)
‖H SB ‖∞ � kBT � ∆

E

|〈Ek|ψ0|Ek〉|2

[ ]∆
E

density of states
of B

[ ] E6=

=⇒ “Theorem” 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + ∆] are locally close to a Gibbs state.

(Dynamic) All initial states ψu,0 locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).



Conditions for equilibration and thermalization | Acknowledgements 18 / 19

Collaborators

Arnau Riera

Markus P. Müller

Jens Eisert



Conditions for equilibration and thermalization | References 19 / 19

References

Thank you for your attention!
−→ slides: www.cgogolin.de

[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J.
Osborne
Physical Review Letters 100 (2008) 30602.

[2] P. Reimann
Physical Review Letters 101 (2008) 190403.

[3] N. Linden, S. Popescu, A. Short, and A. Winter
Physical Review E 79 (2009) 61103.

[4] A. J. Short and T. C. Farrelly
New Journal of Physics 14 (2012) 013063.

[5] P. Reimann and M. Kastner
New Journal of Physics 14 (2012) 043020.

[6] C. Gogolin, M. P. Müller, and J. Eisert
Physical Review Letters 106 (2011) 40401.

[7] J. Gemmer, M. Michel, and G. Mahler,
Quantum Thermodynamics, vol. 784 of Lecture
Notes in Physics, Springer Berlin Heidelberg 2009.

[8] A. Hutter and S. Wehner
Physical Review A 87 (2013) 012121.

[9] A. Riera, C. Gogolin, and J. Eisert
Physical Review Letters 108 (2012) 080402.

[10] C. Gogolin
Physical Review E 81 (2010) 051127.

[11] C. Kollath, A. Läuchli, and E. Altman
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