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Old questions and new results

How do quantum mechanics and 1 =
statistical mechanics go together?
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Q
¥y = Trp[y]
_ dy
H =HsRQ +1QH g+ Hsp — =i[iy, H]

dt
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Equilibration

Theorem 1 (Equilibration on average [3])

If € has non-degenerate energy gaps, then for every 1y = |1o) (10|
there exists a w® such that:

1d2

(1/)1‘, W ) 5 deff

[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
[2] P. Reimann, PRL 101, 190403 (2008).

[3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).

[4] A. J. Short, T. C. Farrelly, NJP 14, 013063 (2012).

[5] P. Reimann and M. Kastner, NJP 14, 043020 (2012).



Non-degenerate energy gaps

F€ has non—degenerate energy gaps iff:
Ey,—E =E, —E,
= k=IlAm=n V k=mAl=n
H—t——F—t——7"
~_ , B
£
Intuition: Sufficient for 5 to be fully interactive

I+ 1 +1Q 4
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Effective dimension

deff 1

~ S (Erloy |t

Intuition: Dimension of supporting energy subspace
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Theorem 1 (Equilibration on average [3])

If € has non-degenerate energy gaps, then for every 1y = |1o) (10|
there exists a w® such that:

1d2

(1/)1‘, W ) 5 deff

— If g°ff > d% then ¢ equilibrates on average.

[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
[2] P. Reimann, PRL 101, 190403 (2008).

[3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [6])

If Tr[A 4] equilibrates on average, it equilibrates towards its time
average

Tr(Ayy) =Tr(Ay) = Tr(Aw),
where W= Z I1, o I
k

is the dephased state that maximizes the von Neumann entropy, given
all conserved quantities (IIj, are the energy eigen projectors).

[6] C. Gogolin, M. P. Miiller, and J. Eisert, PRL 106, 040401 (2011).
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [6])

If Tr[A 4] equilibrates on average, it equilibrates towards its time
average

Tr(Ayy) =Tr(Ay) = Tr(Aw),
where W= Z I1, o I
k

is the dephased state that maximizes the von Neumann entropy, given
all conserved quantities (IIj, are the energy eigen projectors).

= Maximum entropy principle from pure quantum dynamics.

[6] C. Gogolin, M. P. Miiller, and J. Eisert, PRL 106, 040401 (2011).



Interesting open questions:

m Do we really need all (exponentially many) conserved
quantities?

m If not, then which?

m Does this depend on integrability of the model?

m What is the relation to the GGE?
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Thermalization is a complicated process

Thermalization implies:
Equilibration [1, 2, 3, 7]
Subsystem initial state independence [6, 8]
Weak bath state dependence [9]
B Diagonal form of the subsystem equilibrium state [10]
Gibbs state w¥ = Trp(w) ~ e B #s [9]

[1] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100, 030602 (2008).
[2] P. Reimann, PRL 101, 190403 (2008).

[3] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009).

[6] C. Gogolin, M. P. Miiller, and J. Eisert, PRL 106, 040401 (2011).

[7] J. Gemmer, M. Michel, and G. Mahler, Springer (2009).

[8] A. Hutter and S. Wehner, PRA 87, 012121 (2013).

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).

[10] C. Gogolin, PRE 81, 051127 (2010).
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Thermalization and quantum integrability

There is a common belief in the literature [11, 12, 13, 14, 15] ...

Non-integrable = Thermalization
Integrable —> No thermalization

[11] C. Kollath et. al PRL 98, 180601 (2007).

[12] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98, 210405 (2007).
[13] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

[14] M. C. Banuls, J. I. Cirac, and M. B. Hastings, PRL 106, 050405 (2011).

[15] M. Rigol, PRL 103, 100403 (2009).
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Thermalization and quantum integrability

There is a common belief in the literature [11, 12, 13, 14, 15] ...

Non-integrable = Thermalization
Integrable —> No thermalization

... but there are problems.

[11] C. Kollath et. al PRL 98, 180601 (2007).

[12] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98, 210405 (2007).
[13] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

[14] M. C. Banuls, J. I. Cirac, and M. B. Hastings, PRL 106, 050405 (2011).

[15] M. Rigol, PRL 103, 100403 (2009).
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Notions of (non-)integrability

A system is with n degrees of freedom is integrable if

m there exist n (local) conserved mutually commuting
linearly/algebraically independent operators.

m the system is integrable by the Bethe ansatz.
m the system exhibits nondiffractive scattering.
[ T

m the quantum many-body system is exactly solvable in some way.

See also [16]: J.-S. Caux and J. Mossel, JSM 2011, 02 (2011).
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Notions of (non-)integrability

A system is with n degrees of freedom is integrable if

m there exist n (local) conserved mutually commuting
linearly/algebraically independent operators.

m the system is integrable by the Bethe ansatz.
m the system exhibits nondiffractive scattering.
[ T

m the quantum many-body system is exactly solvable in some way.

And non-integrable otherwise?

Lack of imagination?

See also [16]: J.-S. Caux and J. Mossel, JSM 2011, 02 (2011).
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Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [6]):

m Too little (geometric) entanglement in the energy
eigenbasis prevents subsystem initial state independence.

m This can happen even in non-integrable systems.

[6] C. Gogolin, M. P. Miiller, and J. Eisert, PRL 106, 040401 (2011).
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Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [6]):

m Too little (geometric) entanglement in the energy
eigenbasis prevents subsystem initial state independence.

m This can happen even in non-integrable systems.

B S B

[6] C. Gogolin, M. P. Miiller, and J. Eisert, PRL 106, 040401 (2011).



The model:
Spin-1/2 XYZ chain with random coupling and on-site field.

n n—1
%ZZhZJZZ-i-ZbZa"yN
=1 =1




The model:
Spin-1/2 XYZ chain with random coupling and on-site field.

n n—1
%ZZhZJZZ-i-ZbZ&E\IN
i=1 =1

Interesting open questions:
m What is the relation to Anderson localization?
m Can this also happen in translation invariant systems?

m Why is integrability a useful concept despite the
ambiguity?
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Two ways to prove thermalization

Thermalization ]

ETH Our result [9]

| E) {{Ex |0l Ex) }

Assumptions about:

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
[17] T. N. lkeda, Y. Watanabe, and M. Ueda, PRE 84, 2 (2011).
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Two ways to prove thermalization

Thermalization ]

ETH Our result [9]

|E,)  ERH[17] {(Eklvol Ex) }

Assumptions about:

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
[17] T. N. lkeda, Y. Watanabe, and M. Ueda, PRE 84, 2 (2011).
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Structure of the argument

Classical level counting a
la Goldstein [18] with

no interaction
Hog=HsM+1Q7p

+

Perturbation theory for
realistic weak coupling [9]
| 7 sB |loo < kT

Typicality
arguments

— Kinematic

Equilibration

—— Dynamic
results

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
[18] S. Goldstein, J. Lebowitz, R. Tumulka, and N. Zanghi, PRL 96, 050403 (2006).
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The result

density of states
[(Ek|vo| Ex)?
| 758 |00 > gaps(H#0) of B
| 5B |loo < kpT < A
A 4

E E

= “Theorem” 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + A] are locally close to a Gibbs state.

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
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The result
density of states
[(Eilol Bi)
| 758 |00 > gaps(H#0) of B
| 58 |00 < kBT < A H
= 4 TS
E E .

= “Theorem” 2 (Theorem 2 in [9])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + A] are locally close to a Gibbs state.

(Dynamic) All initial states ¢r o locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[9] A. Riera, C. Gogolin, and J. Eisert, PRL 108, 080402 (2012).
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