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Bath, HB,H B

dB � dS

System, HS ,H S

dS = dim(HS)

ψSt = TrB[ψt]

H = H S ⊗1+ 1⊗H B + H SB
dψt
dt

= i [ψt,H ]
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Equilibration

Theorem 1 (Equilibration [2])

If H has non-degenerate energy gaps, then for every ψ0 = |ψ0〉〈ψ0|
there exists a ωS such that:

D(ψSt , ω
S) ≤ 1

2

√
d2
S

deff
.

=⇒ If deff � d2
S then ψSt equilibrates.

Non-degenerate energy gaps

H has non–degenerate energy gaps iff:

Ek − El = Em − En

=⇒ k = l ∧m = n ∨ k = m ∧ l = n

E6=

Intuition: Sufficient for H to be fully interactive

H 6= H 1⊗1 + 1⊗H 2

Effective dimension

deff =
1∑

k |〈Ek|ψ0〉|4
.

Intuition: Dimension of supporting energy subspace

[1] P. Reimann, PRL 101, 190403 (2008)
[2] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009)
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑

k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Proves a conjecture from the condensed matter literature from 2007 [4].

Time averaging

ψ0 =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

[3] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011)
[4] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007)
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Thermalization is a complicated process

Thermalization implies:

1 Equilibration [1, 2, 7]

2 Subsystem initial state independence [3]

3 Weak bath state dependence [5]

4 Diagonal form of the subsystem equilibrium state [6]

5 Gibbs state ωS = TrB[ω] ≈ e−β H S [5]

[1] P. Reimann, PRL 101, 190403 (2008)
[2] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79, 061103 (2009)
[3] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011)
[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[6] C. Gogolin, PRE 81, 051127 (2010)
[7] J. Gemmer, M. Michel, and G. Mahler, Springer (2009)
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Level counting with no coupling

‖H SB ‖∞ = 0

E

〈E(0)
k |ψ

(0)
u |E(0)

k 〉

[ ]

E

ΩB
∆(E)

[ ]

Well known fact [8]:

ω
S(0)
u ∝

∑

k

ΩB
∆(E − ESk ) |ESk 〉〈ESk |

≈
∑

k

e−βE
S
k |ESk 〉〈ESk |

no coupling # bath states in [E − ESk , E − ESk + ∆]

[8] S. Goldstein, PRL 96, 050403 (2006)
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Perturbative coupling ‖H SB ‖∞ < gaps(H 0) . . .

. . . is unrealistic as the spectrum of H 0 becomes exponentially dense.

. . . provably prevents thermalization because

perturbative coupling

=⇒ [3]

effective entanglement in the eigenbasis R(ψ0) is small

=⇒ [3]

absence of initial state independence.

D(ωS(1), ωS(2)) ≥ D(ψ
S(1)
0 , ψ

S(2)
0 )−R(ψ

S(1)
0 )−R(ψ

S(2)
0 )

=⇒ Refutes wide spread believe that “non-integrable models thermalize.”

Effective entanglement in the eigenbasis

R(ψ0) =
∑

k

|〈Ek|ψ0〉|2D(TrB |Ek〉〈Ek|, ψS0 )

Measures how entangled the eigenbasis feels for the
given initial state.

Theorem 3 (Entanglement in eigenbasis)

For every orthonormal basis {|i〉} for S and every
initial product state with ψ0 = |j〉〈j| ⊗ φB0 , the
effective entanglement in the eigenbasis (for
non-degenerate H ) is on average upper bounded by

EφB0 R(|j〉〈j| ⊗ φB0 ) ≤ 2 δ dS ,

where

δ = max
k

min
i
D(TrB |Ek〉〈Ek|, |i〉〈i|)

is the geometric measure of entanglement of the
eigenstate |Ek〉 with respect to the basis {|i〉}.

[3] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011)
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D(TrB |Ek〉〈Ek|, |i〉〈i|)

is the geometric measure of entanglement of the
eigenstate |Ek〉 with respect to the basis {|i〉}.

[3] C. Gogolin, M. P. Müller, and J. Eisert, PRL 106, 040401 (2011)
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Realistic weak coupling

Naive perturbation theory fails.

More realistic weak coupling:

gaps(H 0)� ‖H SB ‖∞ � ∆

Theorem 4 (Corollary of a theorem from [5])

If ‖H SB ‖∞ � ∆ the dephased states ω
S(0)
u and ωSu are close to each

other in the sense that

D(ωSu, ω
S(0)
u ) / 3

√
‖H SB ‖∞

2∆
.
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If ‖H SB ‖∞ � β−1 � ∆ the dephased states ω
S(0)
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D(ωSu, ω
S(0)
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[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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Consequences

‖H SB ‖∞ � gaps(H 0)

E

〈Ek|ψ0|Ek〉

[ ]
E

ΩB
∆(E)

[ ]

E6=

=⇒ “Theorem” 5 (Theorem 2 in [5])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + ∆] are locally close to a Gibbs state.

(Dynamic) All initial states ψu,0 locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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A quantum algorithm for Gibbs state preparation

Quantum circuit
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No detailed knowledge about H S is required.

The algorithm uses partial phase estimation
to prepare ωu.

Complements quantum Metropolis

Trace distance error bound
Explicit runtime

(also compare [9])

Complexity for fixed trace distance error:

polynomially many ancilla qubits
exponential runtime

(Ω(eβ(ES
2 −ES

1 )) is necessary)

[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[9] D. Poulin and P. Wocjan, PRL 103, 220502 (2009)



Thermalization in nature and on a quantum computer | A quantum algorithm for Gibbs state preparation 16 / 18

A quantum algorithm for Gibbs state preparation

Quantum circuit

H •

F †

NM|0〉q .
.
.

.

.

.
. . .

.

.

.

H • NM
H •

|0〉r−t .
.
.

.

.

.
. . .

.

.

.

H •

I U0 Uq−1 Uq Ur−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ωQC

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _




No detailed knowledge about H S is required.

The algorithm uses partial phase estimation
to prepare ωu.

Complements quantum Metropolis

Trace distance error bound
Explicit runtime

(also compare [9])

Complexity for fixed trace distance error:

polynomially many ancilla qubits
exponential runtime

(Ω(eβ(ES
2 −ES

1 )) is necessary)

[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[9] D. Poulin and P. Wocjan, PRL 103, 220502 (2009)



Thermalization in nature and on a quantum computer | A quantum algorithm for Gibbs state preparation 16 / 18

A quantum algorithm for Gibbs state preparation

Quantum circuit

H •

F †

NM|0〉q .
.
.

.

.

.
. . .

.

.

.

H • NM
H •

|0〉r−t .
.
.

.

.

.
. . .

.

.

.

H •

I U0 Uq−1 Uq Ur−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ωQC

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _




No detailed knowledge about H S is required.

The algorithm uses partial phase estimation
to prepare ωu.

Complements quantum Metropolis

Trace distance error bound
Explicit runtime

(also compare [9])

Complexity for fixed trace distance error:

polynomially many ancilla qubits
exponential runtime

(Ω(eβ(ES
2 −ES

1 )) is necessary)

[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[9] D. Poulin and P. Wocjan, PRL 103, 220502 (2009)



Thermalization in nature and on a quantum computer | A quantum algorithm for Gibbs state preparation 16 / 18

A quantum algorithm for Gibbs state preparation

Quantum circuit

H •

F †

NM|0〉q .
.
.

.

.

.
. . .

.

.

.

H • NM
H •

|0〉r−t .
.
.

.

.

.
. . .

.

.

.

H •

I U0 Uq−1 Uq Ur−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ωQC

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _




No detailed knowledge about H S is required.

The algorithm uses partial phase estimation
to prepare ωu.

Complements quantum Metropolis

Trace distance error bound
Explicit runtime

(also compare [9])

Complexity for fixed trace distance error:

polynomially many ancilla qubits
exponential runtime

(Ω(eβ(ES
2 −ES

1 )) is necessary)

[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[9] D. Poulin and P. Wocjan, PRL 103, 220502 (2009)



Thermalization in nature and on a quantum computer | A quantum algorithm for Gibbs state preparation 16 / 18

A quantum algorithm for Gibbs state preparation

Quantum circuit

H •

F †

NM|0〉q .
.
.

.

.

.
. . .

.

.

.

H • NM
H •

|0〉r−t .
.
.

.

.

.
. . .

.

.

.

H •

I U0 Uq−1 Uq Ur−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ωQC

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _




No detailed knowledge about H S is required.

The algorithm uses partial phase estimation
to prepare ωu.

Complements quantum Metropolis

Trace distance error bound
Explicit runtime

(also compare [9])

Complexity for fixed trace distance error:

polynomially many ancilla qubits
exponential runtime

(Ω(eβ(ES
2 −ES

1 )) is necessary)

[5] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[9] D. Poulin and P. Wocjan, PRL 103, 220502 (2009)



Thermalization in nature and on a quantum computer | Acknowledgements 17 / 18

Collaborators

Arnau Riera

Markus P. Müller

Martin Kliesch Jens Eisert

Andreas Winter



Thermalization in nature and on a quantum computer | References 18 / 18

References

Thank you for your attention!
−→ slides: www.cgogolin.de

[1] P. Reimann,
“Foundation of Statistical Mechanics under Experimentally Realistic Conditions”,
Physical Review Letters 101 (2008) no. 19, 190403.

[2] N. Linden, S. Popescu, A. J. Short, and A. Winter,
“Quantum mechanical evolution towards thermal equilibrium”,
Physical Review E 79 (2009) no. 6, 061103.

[3] C. Gogolin, M. Müller, and J. Eisert,
“Absence of Thermalization in Nonintegrable Systems”,
Physical Review Letters 106 (2011) no. 4, 040401.

[4] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii,
“Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D
Lattice Hard-Core Bosons”,
Physical Review Letters 98 (2007) no. 5, 050405.

[5] A. Riera, C. Gogolin, and J. Eisert,
“Thermalization in nature and on a quantum computer”,
1102.2389v1.

[6] C. Gogolin,
“Environment-induced super selection without pointer states”,
Physical Review E 81 (2010) no. 5, 051127.

[7] J. Gemmer, M. Michel, and G. Mahler,
Quantum Thermodynamics, vol. 784.
Springer, Berlin / Heidelberg, 2009.

[8] S. Goldstein,
“Canonical Typicality”,
Physical Review Letters 96 (2006) no. 5, 050403.

[9] D. Poulin and P. Wocjan,
“Sampling from the Thermal Quantum Gibbs State and Evaluating Partition Functions with a Quantum Computer”,
Physical Review Letters 103 (2009) no. 22, 220502.

http://www.cgogolin.de
http://dx.doi.org/{10.1103/PhysRevLett.101.190403}
http://dx.doi.org/{10.1103/PhysRevE.79.061103}
http://dx.doi.org/{10.1103/PhysRevLett.106.040401}
http://dx.doi.org/{10.1103/PhysRevLett.98.050405}
http://arxiv.org/abs/{1102.2389v1}
http://dx.doi.org/{10.1103/PhysRevE.81.051127}
http://dx.doi.org/{10.1007/978-3-540-70510-9}
http://dx.doi.org/{10.1103/PhysRevLett.96.050403}
http://dx.doi.org/{10.1103/PhysRevLett.103.220502}

	Setup
	Equilibration
	Thermalization and realistic weak coupling
	Putting everything together
	A quantum algorithm for Gibbs state preparation
	Acknowledgements
	References

