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Ultra cold quantum gases
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Equilibration

Theorem 1 (Equilibration [1])

If H has non-degenerate energy gaps, then for every ψ0 = |ψ0〉〈ψ0|
there exists a ωS such that:

D(ψSt , ω
S) ≤ 1

2

√
d2
S

deff
.

=⇒ If deff � d2
S then ψSt equilibrates.

Non-degenerate energy gaps

H has non–degenerate energy gaps iff:

Ek − El = Em − En

=⇒ k = l ∧m = n ∨ k = m ∧ l = n

E6=

Intuition: Sufficient for H to be fully interactive

H 6= H 1⊗1 + 1⊗H 2

Effective dimension

deff =
1∑

k |〈Ek|ψ0〉|4
.

Intuition: Dimension of supporting energy subspace

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [2])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

and
ω =

∑

k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Proves a conjecture from the condensed matter literature from 2007.

Time averaging

ψ0 =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Thermalization and realistic weak coupling
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Thermalization is a complicated process

Thermalization implies:

1 Equilibration [1]

2 Subsystem initial state independence [2]

3 Weak bath state dependence [3]

4 Diagonal form of the subsystem equilibrium state [4]

5 Gibbs state ωS = TrB[ω] ≈ e−β H S [3]

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[4] C. Gogolin, PRE 81 (2010) no. 5, 051127
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Level counting with no coupling

‖H SB ‖∞ = 0

E

〈E(0)
k |ψ

(0)
u |E(0)

k 〉

[ ]

E

ΩB
∆(E)

[ ]

Well known fact [5]:

ω
S(0)
u ∝

∑

k

ΩB
∆(E − ESk ) |ESk 〉〈ESk |

≈
∑

k

e−βE
S
k |ESk 〉〈ESk |

no coupling # bath states in [E − ESk , E − ESk + ∆]

[5] S. Goldstein, PRL 96 (2006) no. 5, 050403
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Perturbative coupling ‖H SB ‖∞ < gaps(H 0) . . .

. . . is unrealistic as the spectrum of H 0 becomes exponentially dense.

. . . provably prevents thermalization because

perturbative coupling

=⇒ [2]

effective entanglement in the eigenbasis R(ψ0) is small

=⇒ [2]

absence of initial state independence.

D(ωS(1), ωS(2)) ≥ D(ψ
S(1)
0 , ψ

S(2)
0 )−R(ψ

S(1)
0 )−R(ψ

S(2)
0 )

=⇒ Refutes wide spread believe that “non-integrable models thermalize.”

Effective entanglement in the eigenbasis

R(ψ0) =
∑

k

|〈Ek|ψ0〉|2D(TrB |Ek〉〈Ek|, ψS0 )

Measures how entangled the eigenbasis feels for the
given initial state.

Theorem 3 (Entanglement in eigenbasis)

For every orthonormal basis {|i〉} for S and every
initial product state with ψ0 = |j〉〈j| ⊗ φB0 , the
effective entanglement in the eigenbasis (for
non-degenerate H ) is on average upper bounded by

EφB0 R(|j〉〈j| ⊗ φB0 ) ≤ 2 δ dS ,

where

δ = max
k

min
i
D(TrB |Ek〉〈Ek|, |i〉〈i|)

is the geometric measure of entanglement of the
eigenstate |Ek〉 with respect to the basis {|i〉}.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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non-degenerate H ) is on average upper bounded by

EφB0 R(|j〉〈j| ⊗ φB0 ) ≤ 2 δ dS ,

where

δ = max
k

min
i
D(TrB |Ek〉〈Ek|, |i〉〈i|)

is the geometric measure of entanglement of the
eigenstate |Ek〉 with respect to the basis {|i〉}.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Realistic weak coupling

Naive perturbation theory fails.

Realistic weak coupling: gaps(H 0)� ‖H SB ‖∞ � ∆

Theorem 4 (Corollary of a theorem from [3])

If ‖H SB ‖∞ � ∆ the dephased states ω
S(0)
u and ωSu are close to each

other in the sense that

D(ωSu, ω
S(0)
u ) / 3

√
‖H SB ‖∞

2∆
.
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Consequences

‖H SB ‖∞ � gaps(H 0)

E

〈Ek|ψ0|Ek〉

[ ]
E

ΩB
∆(E)

[ ]

E6=

=⇒ “Theorem” 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + ∆] are locally close to a Gibbs state.

(Dynamic) All initial states ψu,0 locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.
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A quantum algorithm for Gibbs state preparation

Quantum circuit

H •

F †

NM


|0〉q .
.
.

.

.

.
. . .

.

.

.

H • NM



H •

|0〉r−t .
.
.

.

.

.
. . .

.

.

.

H •

I U0 Uq−1 Uq Ur−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ωQC

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _




No detailed knowledge about H S is required.

The algorithm uses partial phase estimation
to prepare ωu.

Rigorous trace distance error bounds.

Explicit runtime
(complementing quantum Metropolis).

Complexity for fixed trace distance error:

polynomially many ancilla qubits
exponential runtime
(Ω(exp(gap(H S)β)) is necessary)
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And there is more. . .

What I didn’t talk about:

Thermalization in exactly solvable models [6, 7]

A strong connection to decoherence [4]

Measure concentration [8, 1, 9, 10]

The major open question:

Time scales. How long does it take to
equilibrate/thermalize/decohere?

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[6] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100 (2008) 030602
[7] M. Cramer and J. Eisert, NJP 12 (2010) 055020
[4] C. Gogolin, PRE 81 (2010) no. 5, 051127
[8] S. Popescu, A. J. Short, and A. Winter, Nature Physics 2 (2006) no. 11, 754
[9] M. Mueller, D. Gross, and J. Eisert, 1003.4982
[10] C. Gogolin, Master’s thesis, 2010, 1003.5058
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