Under what conditions do quantum systems thermalize?

Christian Gogolin

Institute for Physics and Astronomy, Universität Potsdam

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin

2011-06-07 Garching

Motivation

Thermodynamics

Statistical Mechanics

Second Law ergodicity equal a priory probabilities

Classical Mechanics

Thermodynamics

Statistical Mechanics

Second Law ergodicity equal a priory probabilities

Classical Mechanics

Statistical Mechanics

Second Law ergodicity equal a priory probabilities

Classical Mechanics

Ultra cold quantum gases

System,
$$\mathcal{H}_S, \mathscr{H}_S$$

$$d_S = \dim(\mathcal{H}_S)$$

Bath,
$$\mathcal{H}_B, \mathscr{H}_B$$
 $d_B \gg d_S$

System,
$$\mathcal{H}_S, \mathscr{H}_S$$
 Bath, $\mathcal{H}_B, \mathscr{H}_B$
$$d_S = \dim(\mathcal{H}_S) \qquad \qquad d_B \gg d_S$$

System,
$$\mathcal{H}_S, \mathscr{H}_S$$

$$d_S = \dim(\mathcal{H}_S)$$

Bath,
$$\mathcal{H}_B, \mathscr{H}_B$$
 $d_B \gg d_S$

System,
$$\mathcal{H}_S, \mathcal{H}_S$$
 Bath, $\mathcal{H}_B, \mathcal{H}_B$
$$d_S = \dim(\mathcal{H}_S) \qquad \qquad d_B \gg d_S$$

$$\mathscr{H} = \mathscr{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathscr{H}_B + \mathscr{H}_{SB} \qquad \frac{d\psi_t}{dt} = \mathrm{i} \left[\psi_t, \mathscr{H} \right]$$

System,
$$\mathcal{H}_S, \mathscr{H}_S$$
 Bath, $\mathcal{H}_B, \mathscr{H}_B$ $d_S = \dim(\mathcal{H}_S)$ $d_B \gg d_S$

$$\psi_t^S = \text{Tr}_B[\psi_t]$$

$$\mathcal{H} = \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B + \mathcal{H}_{SB}$$

$$\frac{d\psi_t}{dt} = i [\psi_t, \mathcal{H}]$$

Theorem 1 (Equilibration [1])

If \mathscr{H} has non-degenerate energy gaps, then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$ there exists a ω^S such that:

$$\overline{\mathcal{D}(\psi_t^S, \omega^S)} \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

 $\langle \psi_0 |$

Equilibration

Non-degenerate energy gaps

 ${\mathscr H}$ has non-degenerate energy gaps iff:

Theorem

If \mathscr{H} has there exist

$$E_k - E_l = E_m - E_n$$

$$\Longrightarrow k = l \wedge m = n \quad \vee \quad k = m \wedge l = n$$

Intuition: Sufficient for ${\mathscr H}$ to be fully interactive

$$\mathcal{H} \neq \mathcal{H}_1 \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_2$$

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103

Theorem 1 (Equilibration [1])

If \mathscr{H} has non-degenerate energy gaps, then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$ there exists a ω^S such that:

$$\overline{\mathcal{D}(\psi_t^S, \omega^S)} \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

Theorem 1 (Equilibration [1])

there exis

If \mathscr{H} has Effective dimension

$$d^{\text{eff}} = \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4}.$$

Intuition: Dimension of supporting energy subspace

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103

Theorem 1 (Equilibration [1])

If \mathscr{H} has non-degenerate energy gaps, then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$ there exists a ω^S such that:

$$\overline{\mathcal{D}(\psi_t^S, \omega^S)} \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

 \Longrightarrow If $d^{\mathrm{eff}} \gg d_S^2$ then ψ_t^S equilibrates.

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103

Maximum entropy principle

Theorem 2 (Maximum entropy principle [2])

If ${
m Tr}[A\,\psi_t]$ equilibrates, it equilibrates towards its time average

$$\overline{\operatorname{Tr}[A\,\psi_t]} = \operatorname{Tr}[A\,\overline{\psi_t}] = \operatorname{Tr}[A\,\omega],$$

and

$$\omega = \sum_{k} \pi_k \psi_0 \pi_k$$

(with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

^[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

Maximur Time averaging

Theorem If
$${
m Tr}[A\,\psi]$$

and

(with π_k maximize

ities.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

Maximur Time averaging

Theorem If $Tr[A \psi]$

and

(with π_k maximize

ities.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

Maximum entropy principle

Theorem 2 (Maximum entropy principle [2])

If ${\rm Tr}[A\,\psi_t]$ equilibrates, it equilibrates towards its time average

$$\overline{\mathrm{Tr}[A\,\psi_t]}=\mathrm{Tr}[A\,\overline{\psi_t}]=\mathrm{Tr}[A\,\omega],$$

and

$$\omega = \sum_{k} \pi_k \psi_0 \pi_k$$

(with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Proves a conjecture from the condensed matter literature from 2007.

Thermalization and realistic weak coupling

Thermalization is a complicated process

Thermalization implies:

- 1 Equilibration [1]
- 2 Subsystem initial state independence [2]
- 3 Weak bath state dependence [3]
- 4 Diagonal form of the subsystem equilibrium state [4]
- **5** Gibbs state $\omega^S = \operatorname{Tr}_B[\omega] \approx \mathrm{e}^{-\beta \, \mathscr{H}_S}$ [3]

^[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103

^[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

^[4] C. Gogolin, PRE 81 (2010) no. 5, 051127

$$\| \mathcal{H}_{SB} \|_{\infty} = 0 \qquad \qquad \underbrace{\langle E_k^{(0)} | \psi_{\square}^{(0)} | E_k^{(0)} \rangle}_{E}$$

^[5] S. Goldstein, PRL 96 (2006) no. 5, 050403

$$\| \mathcal{H}_{SB} \|_{\infty} = 0 \qquad \underbrace{\langle E_k^{(0)} | \psi_{\sqcap}^{(0)} | E_k^{(0)} \rangle}_{E}$$

Well known fact [5]:
$$\text{no coupling} \qquad \# \text{ bath states in } [E-E_k^S, E-E_k^S+\Delta]$$

$$\omega_\square^{S(0)} \overset{\downarrow}{\propto} \sum_k \Omega_\Delta^B(E-E_k^S) \; |E_k^S\rangle\langle E_k^S|$$

$$\| \mathcal{H}_{SB} \|_{\infty} = 0 \qquad \underbrace{ \begin{pmatrix} \langle E_k^{(0)} | \psi_{\square}^{(0)} | E_k^{(0)} \rangle \\ \vdots \\ \vdots \\ \vdots \\ E \end{pmatrix} }_{E}$$

Well known fact [5]:
$$\begin{array}{c} \text{no coupling} & \# \text{ bath states in } [E-E_k^S, E-E_k^S+\Delta] \\ \downarrow & \swarrow \\ \omega_\square^{S(0)} \propto \sum_k \Omega_\Delta^B(E-E_k^S) \; |E_k^S\rangle\langle E_k^S| \approx \sum_k \mathrm{e}^{-\beta E_k^S} \; |E_k^S\rangle\langle E_k^S| \\ & \qquad \qquad \\ & \text{exponentially dense spectrum} \end{array}$$

$$\| \mathcal{H}_{SB} \|_{\infty} = 0$$

Well known fact [5]:

 $\begin{array}{c} \text{no coupling} & \# \text{ bath states in } [E-E_k^S, E-E_k^S+\Delta] \\ \omega_{\sqcap}^{S(0)} \overset{\downarrow}{\propto} \sum_k \; \Omega_{\Delta}^B (E-E_k^S) \; |E_k^S\rangle \langle E_k^S| \approx \sum_k \mathrm{e}^{-\beta E_k^S} \, |E_k^S\rangle \langle E_k^S| \\ & \mathrm{exponentially \ dense \ spectrum} \end{array}$

lacksquare ... is unrealistic as the spectrum of \mathcal{H}_0 becomes exponentially dense.

^[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

- lacksquare is unrealistic as the spectrum of \mathscr{H}_0 becomes exponentially dense.
- ... provably prevents thermalization because

perturbative coupling

effective entanglement in the eigenbasis $R(\psi_0)$ is small

absence of initial state independence.

$$\mathcal{D}(\omega^{S(1)}, \omega^{S(2)}) \ge \mathcal{D}(\psi_0^{S(1)}, \psi_0^{S(2)}) - R(\psi_0^{S(1)}) - R(\psi_0^{S(2)})$$

^[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

- lacksquare ... is unrealistic as the spectrum of \mathcal{H}_0 becomes exponentially dense.
- ... provably prevents thermalization because

Effective entanglement in the eigenbasis

$$R(\psi_0) = \sum_{k} |\langle E_k | \psi_0 \rangle|^2 \mathcal{D}(\operatorname{Tr}_B | E_k \rangle \langle E_k |, \psi_0^S)$$

Measures how entangled the eigenbasis feels for the given initial state.

$$\mathcal{D}(\omega^{S(1)}, \omega^{S(2)}) \ge \mathcal{D}(\psi_0^{S(1)}, \psi_0^{S(2)}) - R(\psi_0^{S(1)}) - R(\psi_0^{S(2)})$$

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

- ...is
- Theorem 3 (Entanglement in eigenbasis)

For every orthonormal basis $\{|i\rangle\}$ for S and every initial product state with $\psi_0=|j\rangle\langle j|\otimes\phi_0^B$, the effective entanglement in the eigenbasis (for non-degenerate $\mathscr H$) is on average upper bounded by

$$\mathbb{E}_{\phi_0^B} R(|j\rangle\langle j|\otimes\phi_0^B) \le 2\,\delta\,d_S,$$

where

$$\delta = \max_{k} \min_{i} \mathcal{D}(\operatorname{Tr}_{B} |E_{k}\rangle\langle E_{k}|, |i\rangle\langle i|)$$

is the geometric measure of entanglement of the eigenstate $|E_k\rangle$ with respect to the basis $\{|i\rangle\}$.

Ily dense.

all

 $\binom{(2)}{}$

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

- lacksquare ... is unrealistic as the spectrum of \mathcal{H}_0 becomes exponentially dense.
- ... provably prevents thermalization because

perturbative coupling

effective entanglement in the eigenbasis $R(\psi_0)$ is small

absence of initial state independence.

$$\mathcal{D}(\omega^{S(1)}, \omega^{S(2)}) \ge \mathcal{D}(\psi_0^{S(1)}, \psi_0^{S(2)}) - R(\psi_0^{S(1)}) - R(\psi_0^{S(2)})$$

⇒ Refutes wide spread believe that "non-integrable models thermalize."

^[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

Realistic weak coupling

- Naive perturbation theory fails.
- Realistic weak coupling: $\operatorname{gaps}(\mathcal{H}_0) \ll \|\mathcal{H}_{SB}\|_{\infty} \ll \Delta$

Realistic weak coupling

- Naive perturbation theory fails.
- Realistic weak coupling: gaps $(\mathcal{H}_0) \ll \|\mathcal{H}_{SB}\|_{\infty} \ll \Delta$

Theorem 4 (Corollary of a theorem from [3])

If $\|\mathscr{H}_{SB}\|_{\infty} \ll \Delta$ the dephased states $\omega_{\square}^{S(0)}$ and ω_{\square}^{S} are close to each other in the sense that

$$\mathcal{D}(\omega_{\sqcap}^{S}, \omega_{\sqcap}^{S(0)}) \lessapprox 3\sqrt{\frac{\|\mathscr{H}_{SB}\|_{\infty}}{2\Delta}}.$$

Putting everything together

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\| \mathcal{H}_{SB} \|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0}) \bigcap_{E_{k} \mid \psi_{0} \mid E_{k} \rangle} \bigcap_{E} \Omega_{\Delta}^{B}(E)$$

$$\| \mathcal{H}_{SB} \|_{\infty} \ll \Delta$$

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\| \mathcal{H}_{SB} \|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0}) \bigcap^{\langle E_{k} | \psi_{0} | E_{k} \rangle} \bigcap^{\Omega_{\Delta}^{B}(E)} \| \mathcal{H}_{SB} \|_{\infty} \ll \Delta$$

$$\implies$$
 "Theorem" 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace $[E,E+\Delta]$ are locally close to a Gibbs state.

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\| \mathcal{H}_{SB} \|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0})$$

$$\| \mathcal{H}_{SB} \|_{\infty} \ll \Delta$$

$$E \xrightarrow{f} \Omega_{\Delta}^{B}(E)$$

$$\downarrow E$$

[$E, E + \Delta$] are locally close to a Gibbs state.

 \implies "Theorem" 5 (Theorem 2 in [3])

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\| \mathcal{H}_{SB} \|_{\infty} \gg \operatorname{gaps}(\mathcal{H}_{0})$$

$$\| \mathcal{H}_{SB} \|_{\infty} \ll \Delta$$

$$E \xrightarrow{\downarrow} P$$

$$\implies$$
 "Theorem" 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\Pi,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\implies$$
 "Theorem" 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\Pi,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

$$\implies$$
 "Theorem" 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace $[E, E + \Delta]$ are locally close to a Gibbs state.

(Dynamic) All initial states $\psi_{\Pi,0}$ locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

^[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

Outlook

And there is more...

What I didn't talk about:

- Thermalization in exactly solvable models [6, 7]
- A strong connection to decoherence [4]
- Measure concentration [8, 1, 9, 10]

The major open question:

■ Time scales. How long does it take to equilibrate/thermalize/decohere?

- [1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
- [6] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100 (2008) 030602
- [7] M. Cramer and J. Eisert, NJP 12 (2010) 055020
- [4] C. Gogolin, PRE 81 (2010) no. 5, 051127
 [8] S. Popescu, A. J. Short, and A. Winter, Nature Physics 2 (2006) no. 11, 754
- [9] M. Mueller, D. Gross, and J. Eisert, 1003.4982[10] C. Gogolin, Master's thesis, 2010, 1003.5058

Collaborators

Markus P. Müller

Jens Eisert

Peter Janotta

Haye Hinrichsen

Andreas Winter

References

Thank you for your attention!

→ slides: www.cgogolin.de

- N. Linden, S. Popescu, A. J. Short, and A. Winter, "Quantum mechanical evolution towards thermal equilibrium", Physical Review E 79 (2009) no. 6, 061103.
- [2] C. Gogolin, M. P. Müller, and J. Eisert, "Absence of Thermalization in Nonintegrable Systems", Phys. Rev. Lett. (2011) no. 106, 040401.
- [3] A. Riera, C. Gogolin, and J. Eisert, "Thermalization in nature and on a quantum computer", 1102, 2389 v1.
- [4] C. Gogolin,

 "Environment-induced super selection without pointer states",

 Physical Review E 81 (2010) no. 5, 051127.

 [5] S. Goldstein.
- "Canonical Typicality",

 Physical Review Letters 96 (2006) no. 5, 050403.

 [6] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne.
- "Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems", Phys. Rev. Lett. 100 (2008) 030602.
- M. Cramer and J. Eisert,
 "A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states", New J. Phys. 12 (2010) 055020.

 S. Popescu, A. J. Short, and A. Winter,
- "Entanglement and the foundations of statistical mechanics",

 Nature Physics 2 (2006) no. 11, 754.

 [9] M. Mueller, D. Gross, and J. Eisert,
 - "Concentration of measure for quantum states with a fixed expectation value", 1003.4982v2.
- [10] C. Gogolin, "Pure State Quantum Statistical Mechanics", Master's thesis, Julius-Maximilians Universität Würzburg, 2010. http://arxiv.org/abs/1003.5088.