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Ultra cold quantum gases
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System, Hg, s Bath, Hp, g
ds = dim(Hyg) dp > dg
Hsp

Q

d
H =HsQM+1QH g+ FHsp %:iwt’%]
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Setup
System, Hg, s Bath, Hp, g
ds = dim(Hyg) dp > dg
HsB
®)
¥y = Trp[y]
_ dy .
H =HsQM+1QH g+ FHsp — =1i[¢f, S

dt
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Theorem 1 (Equilibration [1])

If 7€ has non-degenerate energy gaps, then for every o = |1o) (o]
there exists a w® such that:

- d2
D7, wd) < .

1
2

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103



Non-degenerate energy gaps

F€ has non—degenerate energy gaps iff:
Ey,—E =E, —E,
= k=IlAm=n V k=mAl=n
H—t——F—t——7"
~_ , B
£
Intuition: Sufficient for 5 to be fully interactive

I+ 1 +1Q 4
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Effective dimension

deff 1

T e (EBrlwo) [

Intuition: Dimension of supporting energy subspace
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Equilibration

Theorem 1 (Equilibration [1])

If 7€ has non-degenerate energy gaps, then for every o = |1o) (o]
there exists a w® such that:

- d2
D(yf,wd) <

1
2

— If d°ff > d% then v} equilibrates.

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [2])

If Tr[A 4] equilibrates, it equilibrates towards its time average
Tr[A ] = Tr[Avy] = Tr[Aw],

and

W= o
i

(with i, the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Time averaging

1o — w is a pinching = w maximizes entropy.
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Maximum entropy principle

Theorem 2 (Maximum entropy principle [2])

If Tr[A 4] equilibrates, it equilibrates towards its time average
Tr[A ] = Tr[Avy] = Tr[Aw],

and

W= o
i

(with i, the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

= Maximum entropy principle from pure quantum dynamics.

Proves a conjecture from the condensed matter literature from 2007.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Thermalization is a complicated process

Q

Thermalization implies:
Equilibration [1]
Subsystem initial state independence [2]
Weak bath state dependence [3]
Diagonal form of the subsystem equilibrium state [4]
Gibbs state w® = Trg[w] ~ e™8 #'s [3]

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389

[4] C. Gogolin, PRE 81 (2010) no. 5, 051127
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Level counting with no coupling

(EQ WO ED)
H %SB Hoo =0

[5] S. Goldstein, PRL 96 (2006) no. 5, 050403
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Level counting with no coupling

(EQ WO ED)

|58 [lc =0
E
Well known fact [5]:
no coupling # bath states in [F — ES,E — E,f + Al
5(0)
wh' ) oc Y QR(E - E) |E)(E|

k

[5] S. Goldstein, PRL 96 (2006) no. 5, 050403
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Level counting with no coupling

(E L B QX(E)
|58 [lc =0
E E
Well known fact [5]:
no coupling # bath states in [F — Elf,E — E,f + Al
—
W3O X ST QB(E - BS) [ESWES) ~ ] e 05 |ES)ES)

k T k
exponentially dense spectrum
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Perturbative coupling || 7 sp ||~ < gaps(#) ...

m ...is unrealistic as the spectrum of 7y becomes exponentially dense.

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Perturbative coupling || 7 sp ||~ < gaps(#) ...

m ...is unrealistic as the spectrum of 7y becomes exponentially dense.

m ...provably prevents thermalization because

perturbative coupling

|l 121

effective entanglement in the eigenbasis R(tg) is small

Il 2]

absence of initial state independence.

DM, w®) > D7, 45 ) — Rws ™) — Rws™)

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Effective entanglement in the eigenbasis

R(vo) = Y |{Exlvo)[* D(Trp |Ey)(Exl, ¢
k

Measures how entangled the eigenbasis feels for the
given initial state.




Theorem 3 (Entanglement in eigenbasis)

For every orthonormal basis {|i)} for S and every
initial product state with 1o = |7)(j| ® ¢F, the
effective entanglement in the eigenbasis (for
non-degenerate .7 ) is on average upper bounded by

Egp R(17) (i ® 6f) < 26 ds,

§= mgxmjnD(TrB |Ex){(Ex|, |7)(i])
7

is the geometric measure of entanglement of the
eigenstate |Ey) with respect to the basis {|i)}.
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Perturbative coupling || 7 sp ||~ < gaps(#) ...

m ...is unrealistic as the spectrum of 7y becomes exponentially dense.

m ...provably prevents thermalization because

perturbative coupling

|l 121

effective entanglement in the eigenbasis R(tg) is small

Il 2]

absence of initial state independence.
DM, w) > Dyg ™, 45 ) — Ry ) — R ™)

—> Refutes wide spread believe that “non-integrable models thermalize.”

[2] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Realistic weak coupling

m Naive perturbation theory fails.
m Realistic weak coupling: gaps(72) < || #sB [loo € A

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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Realistic weak coupling

m Naive perturbation theory fails.
m Realistic weak coupling: gaps(72) < || #sB [loo € A

Theorem 4 (Corollary of a theorem from [3])

If|| 7 sB ||co € A the dephased states wg(o) and ws are close to each
other in the sense that

S(0 H 3B ||oo
D(wd,wi ") £ 3 ||2AH

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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Consequences

(Ex|vo| Ex) QX (E)
| #58 ||oo < gaps(Ho) H
%

L] B o)

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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Consequences

(Ex|vo|Ek) QR (E)
| 55 ||oo > gaps(H#o) .

| #s5 |loo < A H Y
1
[ ]

L] B o)
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Consequences

(Ex|vo| Ex) QX (E)

[ /1
I T

E E

| 5B |l > gaps(H)
| #sB |l <A

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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Consequences

(Ex|vo|Ek) QR (E)
| #55 ||oo > gaps(H#) .

1758 [0 < A

= “Theorem” 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + A] are locally close to a Gibbs state.

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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Consequences

(Ex|vo| Ex) QR (E)
| #s5 ||oo > gaps(#£0) A
| #s5 |l < A H

L]

~ A

= “Theorem” 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + A] are locally close to a Gibbs state.

(Dynamic) All initial states ¢r o locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.
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Consequences

(Ex|vo|Ek) QR (E)
| #55 ||oo > gaps(H#) .

| #s5 |loo < A A
[ 1 > ~
[ ]

= “Theorem” 5 (Theorem 2 in [3])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + A] are locally close to a Gibbs state.

(Dynamic) All initial states ¢r o locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389



A quantum algorithm for Gibbs state preparation

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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A quantum algorithm for Gibbs state preparation

Quantum circuit

‘0)11 |

U() : Uq—l Uq : U'rfl wac

[3] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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No detailed knowledge about J#g is required.
The algorithm uses partial phase estimation
to prepare wn.

Rigorous trace distance error bounds.

Explicit runtime

(complementing quantum Metropolis).
Complexity for fixed trace distance error:
m polynomially many ancilla qubits

m exponential runtime
(Qexp(gap(s)B)) is necessary)
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And there is more. ..

What | didn’t talk about:
m Thermalization in exactly solvable models [6, 7]
m A strong connection to decoherence [4]

m Measure concentration [8, 1, 9, 10]

The major open question:

m Time scales. How long does it take to
equilibrate/thermalize/decohere?

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[6] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, PRL 100 (2008) 030602
[7] M. Cramer and J. Eisert, NJP 12 (2010) 055020

[4] C. Gogolin, PRE 81 (2010) no. 5, 051127

[8] S. Popescu, A. J. Short, and A. Winter, Nature Physics 2 (2006) no. 11, 754

[9] M. Mueller, D. Gross, and J. Eisert, 1003.4982

[10] C. Gogolin, Master's thesis, 2010, 1003.5058
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