What it takes to shun equilibration

Christian Gogolin

ICFO - The Institute of Photonic Sciences

Wallenberg Research Centre Stellenbosh 2018-03-12

Joint work with: R. Gallego, H. Wilming, and J. Eisert

What it takes to shun equilibration

Christian Gogolin

ICFO - The Institute of Photonic Sciences

Wallenberg Research Centre Stellenbosh 2018-03-12

Joint work with:

R. Gallego, H. Wilming, and J. Eisert

S. Hernández, J. I. Cirac, and A. Acín

A short digression into long-range systems. . .

PRL 119, 110601 (2017)

PHYSICAL REVIEW LETTERS

week ending 15 SEPTEMBER 2017

Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature

Senaida Hernández-Santana, ¹ Christian Gogolin, ^{1,2} J. Ignacio Cirac, ² and Antonio Acín ^{1,3}

¹ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelladels (Barcelona), Spain

²Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße I, 85748 Garching, Germany

³ICREA-Institució Catalana de Recerca i Extudis Avançats, 08010 Barcelona. Spain

(Received 22 March 2017, published 13 September 2017)

We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent $\alpha \ge 2D$, correlations between such operators decay at least algebraically tight, which we demonstrate arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate

$$(-1, 2)p \cdot (-1, 2)p \cdot (-1, p)$$

Theorem (Correlation decay for long-range Hamiltonians [1])

For any $\alpha>2\,D$ two-site power-law Hamiltonian on a D-dimensional square lattice and any odd operators A,B and temperature T>0

$$|\operatorname{corr}(A, B)_{\beta}| \lesssim \operatorname{dist}(A, B)^{-\alpha}.$$

Kitaev chain

$$H := -t \sum_{i=1}^{L} \left(a_i^{\dagger} a_{i+1} + \text{h.c.} \right) - \mu \sum_{i=1}^{L} \left(n_i - 1/2 \right) + \frac{\Delta}{2} \sum_{i=1}^{L} \left(a_i a_{i+1} + a_{i+1}^{\dagger} a_i^{\dagger} \right),$$

^[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)

^[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)

Kitaev chain with long-range interactions [2, 3]:

$$H := -t \sum_{i=1}^{L} \left(a_i^{\dagger} a_{i+1} + \text{h.c.} \right) - \mu \sum_{i=1}^{L} \left(n_i - 1/2 \right) + \frac{\Delta}{2} \sum_{i=1}^{L} \sum_{j=1}^{L-1} d_j^{-\alpha} \left(a_i a_{i+j} + a_{i+j}^{\dagger} a_i^{\dagger} \right),$$

^[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)

^[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)

Kitaev chain with long-range interactions [2, 3]:

$$H := - \sum_{i=1}^{L} \left(a_i^{\dagger} a_{i+1} + \text{h.c.} \right) - \mu \sum_{i=1}^{L} \left(n_i - 1/2 \right)$$
$$+ \sum_{i=1}^{L} \sum_{j=1}^{L-1} d_j^{-\alpha} \left(a_i a_{i+j} + a_{i+j}^{\dagger} a_i^{\dagger} \right),$$

^[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)

^[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)

Kitaev chain with long-range interactions [2, 3]:

$$H := - \sum_{i=1}^{L} \left(a_i^{\dagger} a_{i+1} + \text{h.c.} \right) - \mu \sum_{i=1}^{L} \left(n_i - 1/2 \right)$$
$$+ \sum_{i=1}^{L} \sum_{j=1}^{L-1} d_j^{-\alpha} \left(a_i a_{i+j} + a_{i+j}^{\dagger} a_i^{\dagger} \right),$$

Quadratic Hamiltonian, hence Wick's theorem implies

$$\operatorname{corr}_{\beta}(n_i, n_j) = \langle a_i^{\dagger} a_j \rangle_{\beta} \langle a_i a_j^{\dagger} \rangle_{\beta} - \langle a_i^{\dagger} a_j^{\dagger} \rangle_{\beta} \langle a_i a_j \rangle_{\beta}.$$

^[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)

^[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)

Density-density correlations in a long-range Kitaev chain Kitaev

Quad

^[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)

^[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)

Methods

Combination of

Integral representation of $corr_{\beta}(A,B)$ [4] and

^[4] M. B. Hastings, Phys. Rev. Lett., 93.12 (2004), 126402

Methods

Combination of

- Integral representation of $\mathrm{corr}_{\beta}(A,B)$ [4] and
- Lieb-Robinson bounds [5]

^[4] M. B. Hastings, Phys. Rev. Lett., 93.12 (2004), 126402

^[5] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov, Phys. Rev. Lett., 114.15 (2015), 157201

What it takes to shun equilibration

Christian Gogolin

ICFO - The Institute of Photonic Sciences

Wallenberg Research Centre Stellenbosh 2018-03-12

Central question:

How difficult is it to bring a quantum manybody system permanently out of equilibrium?

Some context

Some context

Theorem (Equilibration on average)

If H has non-degenerate energy gaps, then for every initial state $\rho=|\psi_0\rangle\langle\psi_0|$ there exists a state $\omega_H(\rho)$ such that

^[7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602

^[8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403

^[9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E, 79.6 (2009), 61103

^[10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063[11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020

^[12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001

Non-degenerate energy gaps

Theorem H has non-degenerate energy gaps iff:

If
$$H$$
 has $ho = |\psi_0
angle \langle$

$$E_k - E_l = E_m - E_n$$

$$\implies k = l \land m = n \quad \lor \quad k = m \land l = n$$

 $H \neq H_1 \otimes \mathbb{1} + \mathbb{1} \otimes H_2$

Intuition: Sufficient for H to be fully interactive

- [8] P. Reimann, I
- [9] N. Linden, S.
- [11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020
- [12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001

Theorem (Equilibration on average)

If H has non-degenerate energy gaps, then for every initial state $\rho = |\psi_0\rangle\langle\psi_0|$ there exists a state $\omega_H(\rho)$ such that

for all observables
$$A = \overline{\left(\operatorname{Tr}(A\,\rho(t)) - \operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \frac{\|A\|_\infty^2}{d_H^{\mathrm{eff}}(\rho)}$$

^[7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602

^[8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403

^[9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E, 79.6 (2009), 61103

^[10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063[11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020

^[12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001

Theorem (Equilibration on average)

If H has non-degenerate energy gaps, then for every initial state $ho=|\psi_0\rangle\langle\psi_0|$ there exists a state $\omega_H(\rho)$ such that

^[7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602

^[8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403

^[9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E, 79.6 (2009), 61103

^[10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063[11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020

^[12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001

Theorem (Equilibration on average)

If H has non-degenerate energy gaps, then for every initial state $ho=|\psi_0\rangle\langle\psi_0|$ there exists a state $\omega_H(\rho)$ such that

and actually $\omega_H(\rho) = \overline{\rho(t)} = \sum_k |E_k\rangle\langle E_k|\rho|E_k\rangle\langle E_k|.$

^[7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602

^[8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403

^[9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E, 79.6 (2009), 61103

^[10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063[11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020

^[12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001

Theorem (Equilibration on average)

If H has non-degenerate energy gaps, then for every initial state $\rho = |\psi_0\rangle\langle\psi_0|$ there exists a state $\omega_H(\rho)$ such that

Effective dimension

$$d_H^{\text{eff}}(\rho) := \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)}$$

for all
$$d_H^{color}(\rho) \coloneqq \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\mathrm{Tr}(\omega_H(\rho)^2)} \frac{d_S^2}{d_H^{\mathrm{eff}}(\rho)}$$

and actually
$$\omega_H(\rho) = \overline{\rho(t)} = \sum_k |E_k\rangle\langle E_k|\rho|E_k\rangle\langle E_k|.$$

^[7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602

^[8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403

^[9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E. 79.6 (2009), 61103

^[10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063 [11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020

^[12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001

Theorem (Equilibration on average)

If H has non-degenerate energy gaps, then for every initial state $ho=|\psi_0\rangle\langle\psi_0|$ there exists a state $\omega_H(\rho)$ such that

and actually $\omega_H(\rho) = \overline{\rho(t)} = \sum_k |E_k\rangle\langle E_k|\rho|E_k\rangle\langle E_k|.$

^[7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602

^[8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403

^[9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E, 79.6 (2009), 61103

^[10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063[11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020

^[12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001

$$d_H^{\text{eff}}(\rho) \coloneqq \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)}$$

$$d_H^{\text{eff}}(\rho) := \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)}$$

It is huge for states with reasonable energy uncertainty!

$$d_H^{\text{eff}}(\rho) \approx 2^{10^{23}}$$

$$d_H^{\text{eff}}(\rho) := \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)}$$

It is huge for states with reasonable energy uncertainty!

$$d_H^{\text{eff}}(\rho) \approx 2^{10^{23}}$$

Intuition: Dimension of supporting energy subspace

It is huge for typical states from unitary invariant ensembles

$$d_H^{\text{eff}}(\rho) := \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)}$$

It is huge for states with reasonable energy uncertainty!

$$d_H^{\text{eff}}(\rho) \approx 2^{10^{23}}$$

- It is huge for typical states from unitary invariant ensembles
- Also known as participation ratio and widely used

$$d_H^{\text{eff}}(\rho) := \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)} = 2^{S_2(\omega_H(\rho))}$$

It is huge for states with reasonable energy uncertainty!

$$d_H^{\text{eff}}(\rho) \approx 2^{10^{23}}$$

- It is huge for typical states from unitary invariant ensembles
- Also known as participation ratio and widely used

$$d_H^{\text{eff}}(\rho) := \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)} = 2^{S_2(\omega_H(\rho))}$$

It is huge for states with reasonable energy uncertainty!

$$d_H^{\text{eff}}(\rho) \approx 2^{10^{23}}$$

- It is huge for typical states from unitary invariant ensembles
- Also known as participation ratio and widely used
- Why the Rényi two entropy?

$$S_{\alpha}(\omega) \coloneqq \frac{1}{1-\alpha} \log(\operatorname{Tr}(\omega^{\alpha}))$$

$$d_H^{\text{eff}}(\rho) := \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4} = \frac{1}{\text{Tr}(\omega_H(\rho)^2)} = 2^{S_2(\omega_H(\rho))}$$

It is huge for states with reasonable energy uncertainty!

$$d_H^{\text{eff}}(\rho) \approx 2^{10^{23}}$$

Intuition: Dimension of supporting energy subspace

- It is huge for typical states from unitary invariant ensembles
- Also known as participation ratio and widely used
- Why the Rényi two entropy?

$$S_{\alpha}(\omega) := \frac{1}{1-\alpha} \log(\operatorname{Tr}(\omega^{\alpha}))$$

■ Alternatives? Yes! In terms of the second largest population [11].

Motivation

Central questions:

- How difficult is it to avoid equilibration?
 Can we quantify this in a resource theoretic way?
- Which other equilibration bounds can we hope to prove? How arbitrary is the choice of the two entropy?

Preparing systems out of equilibrium

Given stationary states

 σ^{ζ}

 \otimes

 σ^R

Preparing systems out of equilibrium

Given stationary states

 H_i^Q

 σ^Q

 \otimes

 σ^R

 H_i^R

$$\mathcal{R}(\rho, H) := \log \left(\frac{d}{d_H^{\text{eff}}(\rho)} \right)$$

$$\mathcal{R}(\rho, H) := \log \left(\frac{d}{d_H^{\text{eff}}(\rho)} \right)$$

Properties:

High resilience is necessary condition for avoiding equilibration.

$$0 \le \mathcal{R}(\rho, H) := \log\left(\frac{d}{d_H^{\text{eff}}(\rho)}\right) \le \log(d)$$

Properties:

High resilience is necessary condition for avoiding equilibration.

$$\mathcal{R}(\rho, H) := \log \left(\frac{d}{d_H^{\text{eff}}(\rho)} \right) = D_2 \left(\omega_H(\rho) || \mathbb{1}/d \right)$$

Properties:

- High resilience is necessary condition for avoiding equilibration.
- Additive on stationary uncoupled product states

$$\mathcal{R}(\sigma^Q \otimes \sigma^R, H^Q + H^R) = \mathcal{R}(\sigma^Q, H^Q) + \mathcal{R}(\sigma^R, H^R).$$

$$\mathcal{R}(\rho, H) := \log \left(\frac{d}{d_H^{\text{eff}}(\rho)} \right) = D_2 \left(\omega_H(\rho) || \mathbb{1}/d \right)$$

Properties:

- High resilience is necessary condition for avoiding equilibration.
- Additive on stationary uncoupled product states

$$\mathcal{R}(\sigma^Q \otimes \sigma^R, H^Q + H^R) = \mathcal{R}(\sigma^Q, H^Q) + \mathcal{R}(\sigma^R, H^R).$$

Non-increasing under unital maps

$$\mathcal{R}(\Lambda(\sigma), H) \leq \mathcal{R}(\sigma, H).$$

Results

Theorem (No resilience for free)

Given $\sigma^Q \otimes \hat{\sigma}^R$ stationary and H_i^{QR} and H_f^{QR} non-interacting

$$\Delta \mathcal{R}^Q \le \mathcal{R}(\sigma^R, H_i^R).$$

Theorem (No resilience for free)

Given $\sigma^Q \otimes \hat{\sigma}^R$ stationary and H_i^{QR} and H_f^{QR} non-interacting

$$\mathcal{R}(\rho^Q, H_f^Q) - \mathcal{R}(\sigma^Q, H_i^Q) =: \Delta \mathcal{R}^Q \leq \mathcal{R}(\sigma^R, H_i^R).$$

Theorem (No resilience for free)

Given $\sigma^Q \otimes \hat{\sigma}^R$ stationary and H_i^{QR} and H_f^{QR} non-interacting

$$\mathcal{R}(\rho^Q, H_f^Q) - \mathcal{R}(\sigma^Q, H_i^Q) =: \Delta \mathcal{R}^Q \leq \mathcal{R}(\sigma^R, H_i^R).$$

Doesn't mean we need to spend the resilience!

Theorem (No resilience for free)

Given $\sigma^Q \otimes \hat{\sigma}^R$ stationary and H_i^{QR} and H_f^{QR} non-interacting

$$\mathcal{R}(\rho^Q, H_f^Q) - \mathcal{R}(\sigma^Q, H_i^Q) =: \Delta \mathcal{R}^Q \leq \mathcal{R}(\sigma^R, H_i^R).$$

Doesn't mean we need to spend the resilience! But:

Theorem (Without correlations resilience is a resource)

If in addition $\rho^{QR} = \rho^Q \otimes \rho^R$

$$\Delta \mathcal{R}^Q \le -\Delta \mathcal{R}^R$$
.

Consider a family of systems of increasing number of sub-systems n.

Theorem (No "second law of equilibration")

There are (natural) stationary states σ_n^Q and Hamiltonians such that for every $\epsilon > 0$ there exist states σ_n^R and a mixture of unitaries Λ such that:

Consider a family of systems of increasing number of sub-systems n.

Theorem (No "second law of equilibration")

There are (natural) stationary states σ_n^Q and Hamiltonians such that for every $\epsilon>0$ there exist states σ_n^R and a mixture of unitaries Λ such that:

 ρ_n^Q has diverging resilience and does not equilibrate.

Consider a family of systems of increasing number of sub-systems n.

Theorem (No "second law of equilibration")

There are (natural) stationary states σ_n^Q and Hamiltonians such that for every $\epsilon>0$ there exist states σ_n^R and a mixture of unitaries Λ such that:

- lacksquare ho_n^Q has diverging resilience and does not equilibrate.
- The resource is exactly preserved $\rho_n^R = \sigma_n^R$.

Consider a family of systems of increasing number of sub-systems n.

Theorem (No "second law of equilibration")

There are (natural) stationary states σ_n^Q and Hamiltonians such that for every $\epsilon>0$ there exist states σ_n^R and a mixture of unitaries Λ such that:

- lacksquare ho_n^Q has diverging resilience and does not equilibrate.
- The resource is exactly preserved $\rho_n^R = \sigma_n^R$.
- lacksquare The correlations between Q and R are ϵ small

$$I(Q:R) := D_1(\rho_n^{QR} || \rho_n^Q \otimes \rho_n^R) \le \epsilon.$$

Consider a family of systems of increasing number of sub-systems n.

Theorem (No "second law of equilibration")

There are (natural) stationary states σ_n^Q and Hamiltonians such that for every $\epsilon>0$ there exist states σ_n^R and a mixture of unitaries Λ such that:

- lacksquare ho_n^Q has diverging resilience and does not equilibrate.
- The resource is exactly preserved $\rho_n^R = \sigma_n^R$.
- lacksquare The correlations between Q and R are ϵ small

$$I(Q:R) := D_1(\rho_n^{QR} || \rho_n^Q \otimes \rho_n^R) \le \epsilon.$$

Highlights the importance of interactions!

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2 \, 2^{-S_1(\omega_H(\rho))}.$$

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2 \, 2^{-S_2(\omega_H(\rho))}.$$

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2/d_H^{\text{eff}}(\rho)$$

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2 \, 2^{-S_2(\omega_H(\rho))}.$$

It could, if one could prove equilibration inequalities of the form

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2 \, 2^{-S_1(\omega_H(\rho))}.$$

It could, if one could prove equilibration inequalities of the form

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2 \, 2^{-S_1(\omega_H(\rho))}.$$

- But this is not possible. As one can easily construct families of states that
 - do not equilibrate,
 - but have a diverging $S_1(\omega_H(\rho))$.

It could, if one could prove equilibration inequalities of the form

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2 \, 2^{-S_1(\omega_H(\rho))}.$$

- But this is not possible. As one can easily construct families of states that
 - do not equilibrate,
 - but have a diverging $S_1(\omega_H(\rho))$.
- The remaining entropies are all similar $\forall \alpha > 1 \colon \frac{\alpha 1}{\alpha} S_{\alpha} \leq S_{\infty} \leq S_{\alpha}$ and non of them sub-additive.

It could, if one could prove equilibration inequalities of the form

$$\overline{\left(\operatorname{Tr}(A\,\rho(t))-\operatorname{Tr}(A\,\omega_H(\rho))\right)^2} \leq \|A\|_{\infty}^2 \, 2^{-S_1(\omega_H(\rho))}.$$

- But this is not possible. As one can easily construct families of states that
 - do not equilibrate,
 - but have a diverging $S_1(\omega_H(\rho))$.
- The remaining entropies are all similar $\forall \alpha > 1 \colon \frac{\alpha 1}{\alpha} S_{\alpha} \leq S_{\infty} \leq S_{\alpha}$ and non of them sub-additive.
- Maybe physical restrictions on Λ can fix this?

Summary and outlook

Equilibration appears as a natural consequence of unitary dynamics. . .

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .
- ... but there is no second law of "non-equilibratingness".

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .
- ... but there is no second law of "non-equilibratingness".
- This is not our fault: no equilibration inequality based on the von Neumann entropy can hold.

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .
- ... but there is no second law of "non-equilibratingness".
- This is not our fault: no equilibration inequality based on the von Neumann entropy can hold.
- lacktriangle What about more physical maps Λ , like energy preserving operations?

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .
- ... but there is no second law of "non-equilibratingness".
- This is not our fault: no equilibration inequality based on the von Neumann entropy can hold.
- lacktriangle What about more physical maps Λ , like energy preserving operations?
- What about equilibration results based on the second largest population?

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .
- ... but there is no second law of "non-equilibratingness".
- This is not our fault: no equilibration inequality based on the von Neumann entropy can hold.
- What about more physical maps Λ , like energy preserving operations?
- What about equilibration results based on the second largest population?

Ask me about \ \undersetum!

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .
- ... but there is no second law of "non-equilibratingness".
- This is not our fault: no equilibration inequality based on the von Neumann entropy can hold.
- What about more physical maps Λ , like energy preserving operations?
- What about equilibration results based on the second largest population?

Ask me about \ \undersetum!

Thank you for your attention!

- Equilibration appears as a natural consequence of unitary dynamics. . .
- ...and is extremely hard to avoid.
- The resilience has several desirable properties for therm. resource. . .
- ... but there is no second law of "non-equilibratingness".
- This is not our fault: no equilibration inequality based on the von Neumann entropy can hold.
- What about more physical maps Λ , like energy preserving operations?
- What about equilibration results based on the second largest population?

Ask me about \ \undersetum!

References

- S. Hernández-Santana, C. Gogolin, J. I. Cirac, and A. Acín, Phys. Rev. Lett., 119.11 (2017), 110601, arXiv: 1702.00371.
- [2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014), arXiv: 1405.5440.
- [3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016), arXiv: 1508.00820.
- [4] M. B. Hastings, Phys. Rev. Lett., 93.12 (2004), 126402, arXiv: cond-mat/0406348.
- [5] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov, Phys. Rev. Lett., 114.15 (2015), 157201, arXiv: arXiv:1410.3466v1.
- [6] R. Gallego, H. Wilming, J. Eisert, and C. Gogolin, (2017), arXiv: 1711.09832.
- [7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602, arXiv: cond-mat/0703314.
- [8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403, arXiv: 0810.3092.
- [9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E, 79.6 (2009), 61103, arXiv: 0812.2385.
- [10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063, arXiv: 1110.5759.
- [11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020, arXiv: 1202.2768.
- [12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001, arXiv: 1503.07538.
- [13] M. P. Mueller, (2017), arXiv: 1707.03451.