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We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium.
We prove a bound on the correlation decay between antico ing operats
Lieb-Robinson-type bound. Our results show that in these systems 0

f spatial dimension D with, not
necessarily translation invariant, two-site interactions decaying algebraically with the distance with an

exponent & > 2D, correlations between such operators decay at least algebrai

cally to 0 with an exponent
arbitrarily close to @ at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate
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Theorem (Correlation decay for long-range Hamiltonians [1])

For any a > 2 D two-site power-law Hamiltonian on a D-dimensional
square lattice and any odd operators A, B and temperature T" > 0

|corr(A, B)g| < dist(A4, B)™“.

[1] S. Hernandez-Santana, C. Gogolin, J. I. Cirac, and A. Acin, Phys. Rev. Lett., 119.11 (2017), 110601
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[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)
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What it takes to shun equilibration = A short digression into long-range systems. . .

Application to the long-range Kitaev chain

Kitaev chain with long-range interactions [2, 3]:

L L
H = — tz (a;-r i1l +h.c.) — “Z (nZ — 1/2)
i=1 i=1
A lL L-1 Z
+5 > D d % (aiaigs + af;af),
i=1 j=1

[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)
[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)



What it takes to shun equilibration = A short digression into long-range systems. . .

Application to the long-range Kitaev chain

Kitaev chain with long-range interactions [2, 3]:

L L
H = — Z(Ial+1+hc) uZ(ni—l/Q)
i=1 i=1
lL L-1 l
2 Z d]a Q5 Qi+ 5 +CLE+]~ ai)a
i=1 j=1

[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)
[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)



What it takes to shun equilibration = A short digression into long-range systems. . .

Application to the long-range Kitaev chain

Kitaev chain with long-range interactions [2, 3]:

L L
H = — Z(jal+1+hc) uZ(ni—l/Q)
i=1 i=1
lL L-1 Z
2 Z d]a Q5 Qi+ 5 +CLI+]- aj)a
i=1 j=1

Quadratic Hamiltonian, hence Wick's theorem implies

corrg(ni, ny) = (al a;)g (aial)p — (af al)g (as a;)5.

[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)
[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)
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Methods

Combination of
m Integral representation of corrg(A, B) [4] and
m Lieb-Robinson bounds [5]

nearest neighbour/ power-law decaying/
finite-range long-range

[4] M. B. Hastings, Phys. Rev. Lett., 93.12 (2004), 126402
[5] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov, Phys. Rev. Lett., 114.15 (2015), 157201
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Motivation

Central question:

How difficult is it to bring a quantum many-
body system permanently out of equilibrium?
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Theorem (Equilibration on average)
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8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403
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11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020
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Non-degenerate energy gaps
H has non—degenerate energy gaps iff:

E,-E=E,—-FE,

—k=IAm=n V k=mAl=n
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E

‘\#/‘

Intuition: Sufficient for H to be fully interactive

H#H1+1® Ho
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The effective dimension

1 1
~ B T Tr(wr(p)?)

d¥(p) : _ o9S2(wn(p))

m It is huge for states with reasonable energy uncertainty!
il 10%3
af(p) ~ 2

Intuition: Dimension of supporting energy subspace
m It is huge for typical states from unitary invariant ensembles
m Also known as participation ratio and widely used
m Why the Rényi two entropy?

1
C1l-a

Sa(w) : log(Tr(w®))

m Alternatives? Yes! In terms of the second largest population [11].

[11] P. Reimann and M. Kastner,
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Motivation

Central questions:

m How difficult is it to avoid equilibration?
Can we quantify this in a resource theoretic way?

m Which other equilibration bounds can we hope to prove?
How arbitrary is the choice of the two entropy?
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Preparing systems out of equilibrium

Given Initial Persis_t.enfc
stationary Initialization ctate non-equilibrium
states dynamics?
HY? H}f N

o@ o /\ A /\ /\ 5
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Resilience against equilibration

R(p, H) i= log ( ) — Dy (wn(p)I1/d)

dg (p)
Properties:

m High resilience is necessary condition for avoiding equilibration.

m Additive on stationary uncoupled product states
R(c® ® oft, HY + H?) = R(09, HY) + R(c®, HT).
m Non-increasing under unital maps

R(A(0), H) < R(o, H).
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The resilience as a resource

Theorem (No resilience for free)

Given 09 @ 6% stationary and HOE and HOR non-interacting
i !

R(p? HP) - R(0?, HY) = AR? < R(c", HF).

Doesn’'t mean we need to spend the resilience! But:

Theorem (Without correlations resilience is a resource)
If in addition p@f = p@ @ pk

ARC < —ARE.
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Catalytic processes

Consider a family of systems of increasing number of sub-systems n.

Theorem (No “second law of equilibration™)

There are (natural) stationary states o¢ and Hamiltonians such that for

every € > 0 there exist states 0¥ and a mixture of unitaries A such that:

[ pg has diverging resilience and does not equilibrate.
R

m The resource is exactly preserved pft = g%,

m The correlations between @ and R are ¢ small

I(Q: R) = D1 (p9%p? @ pk) < e.

Highlights the importance of interactions!

Builds on results from M. P. Mueller, (2017), arXiv: 1707.03451
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Can this be repaired?

m It could, if one could prove equilibration inequalities of the form

(Te(Ap(®) — Tr(Awn(p)))” < [|AJ|Z, 2751 n (),

This would lead to a sub-additive notion of resilience.

m But this is not possible. As one can easily construct families of states
that

m do not equilibrate,
m but have a diverging S1(wg(p)).

m The remaining entropies are all similar Vo > 1: m e=lg < §.<8,
and non of them sub-additive.

m Maybe physical restrictions on A can fix this?
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Which “powerful lessons” have we learned?

Thank you for your attention!

Equilibration appears as a natural consequence of unitary dynamics. . .
...and is extremely hard to avoid.
The resilience has several desirable properties for therm. resource. ..

... but there is no second law of “non-equilibratingness”.

This is not our fault: no equilibration inequality based on the von
Neumann entropy can hold.

What about more physical maps A, like energy preserving operations?

m What about equilibration results based on the second largest
population?

Ask me about ( kua ntum.
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