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http://www.icfo.eu/


What it takes to shun equilibration | A short digression into long-range systems. . . 2 / 22

A short digression into long-range systems. . .

Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions

at Nonzero Temperature
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We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium.

We prove a bound on the correlation decay between anticommuting operators and generalize a long-range

Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not

necessarily translation invariant, two-site interactions decaying algebraically with the distance with an

exponent α ≥ 2D, correlations between such operators decay at least algebraically to 0 with an exponent

arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate

by a high temperature expansion and by numerically analyzing density-density correlations in the one-

dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.

DOI: 10.1103/PhysRevLett.119.110601

Systems with long-range interactions decaying algebrai-

cally (power-law-like) with the distance have many fasci-

nating properties setting them apart from systems with

merely finite range or exponentially decayi
ng (short-range)

interactions. Very recently, a surge of interest in the

properties of these models has led to a wealth of new

insights. For example, in such systems very quick equili-

bration [1–3] and fast spreading of correlations [4,5], as

well as violations of the area law [6] and very fast state

transfer [7], are possible. Most importantly, they show

topological effects and support Majorana edge modes [8,9].

This development is to a large extent a consequence of the

fact that such systems can be realized [10–13] in extremely

well-controlled experiments with polar molecules [14],

ultracold ions [4,15–18], and Rydberg atoms [19]. At

the same time, many of the fundamental interactions in

nature are actually algebraically decaying, such as dipole-

dipole interactions, the van der Waals force, and, last but

not least, the Coulomb interaction.

In some cases, realistic systems can be approximately

captured by finite-range models, for example, in the limit of

a tight binding approximation. The physics of such systems

has been at the center of attention of theoretical condensed

matter physics. In particular, it has been proven for finite-

range fermionic systems that the correlations between

anticommuting operators decay exponentially at any non-

zero temperature [20] and the same holds at zero temper-

ature whenever there is a nonvanishing gap above the

ground state [21]. Similarly, arbitrary observables above a

threshold temperature in finite-range spin and fermionic

systems [22] show exponential decay of correlations. A

similar level of understanding of the correlation decay of

truly long-range interacting systems is lacking so far [9],

but is no less desirable due to their intriguing properties

[1–3,6,7,9–12,23–29].

The goal of our work is to advance the understanding of

the decay of correlations in long-range interacting systems

at finite temperature. Our main result predicts that certain

correlations at nonzero temperature in general fermionic

two-site interacting long-range systems of arbitrary spatial

dimension decay at least with essentially the s
ame exponent

as the interaction strength. The bound holds in both clean,

translation invariant systems and in such with disorder. This

result is based on recent advances [30] on the dynamical

spreading of correlations in long-range in
teracting systems.

We demonstrate that our bound is asymptotically tight by

means of a high temperature expansion and by numerical

simulations of a one-dimensional Kitaev chain of fermions

with long-range p-wave pairing at finite temperature,

whose ground state phase diagram has been extensively

studied [8,31]. As our bound (which holds for all nonzero

temperatures) can be asymptotically saturated already at

arbitrarily high temperature and as correlations typically do

not decay faster at low temperatures, our result suggests the

absence of phase transitions in such models that impact the

asymptotic decay behavior of correlations.

Setting and notation.—We study the correlations and

their decay behavior in quantum many-body systems in

thermal equilibrium at finite temperature T. We focus on

systems of spinless fermions in which for each site i ∈

f1…; Lg we have a fermionic creation a†i and an annihi-

lation operator ai that satisfy the anticom
mutation relations

fai; a†jg ≔ aia
†
j þ a†jai ¼ δi;j (a generalization to spin-full

fermions is straightforward). We denote by ni ≔ a†i ai the

particle number operator of site i. For A and B operators on

the Fock space we define their correlation coefficient as

corrðA;BÞβ ≔ hABiβ − hAiβhBiβ; ð1Þ

where h·iβ is the expectation value in the thermal state
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Correlation decay for power-law Hamiltonians (Fermions)

Jx,y ∝ dist(x, y)−α

corr(A,B)β := 〈AB〉β − 〈A〉β 〈B〉β,

Theorem (Correlation decay for long-range Hamiltonians [1])

For any α > 2D two-site power-law Hamiltonian on a D-dimensional
square lattice and any odd operators A,B and temperature T > 0

| corr(A,B)β| . dist(A,B)−α.

[1] S. Hernández-Santana, C. Gogolin, J. I. Cirac, and A. Aćın, Phys. Rev. Lett., 119.11 (2017), 110601
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Application to the long-range Kitaev chain

Kitaev chain

with long-range interactions [2, 3]

:

H := − t

L∑
i=1

(
a†i ai+1 + h.c.

)
− µ

L∑
i=1

(
ni − 1/2

)
+

∆

2

L∑
i=1

L−1∑
j=1

d−αj

(
ai ai+1 + a†i+1 a

†
i

)
,

Quadratic Hamiltonian, hence Wick’s theorem implies

corrβ(ni, nj) = 〈a†i aj〉β 〈ai a
†
j〉β − 〈a

†
i a
†
j〉β 〈ai aj〉β.

[2] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett., 113.15 (2014)

[3] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys., 18.1 (2016)
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Density-density correlations in a long-range Kitaev chain

c⃗ ≔ ða1; a†1;…; am; a
†
mÞ and the Hamiltonian matrix h is

Hermitian. By diagonalizing h ¼ U†DU it can then be
brought into the formH ¼ P

ib
†
i Diibi, with b⃗ ≔ Uc⃗. From

this normal-mode decomposition one can compute the
elements corrðbj; b†kÞβ of the covariance matrix of the
thermal state and, finally, expectation values of the form
corrðaj; a†kÞβ, which are just complex linear combinations

of the corrðbj; b†kÞβ.
This allows one to calculate higher moments, including

the experimentally directly accessible density-density
correlations corrðnj; nkÞ, in terms of the second moments
of the thermal states of quadratic Hamiltonians, which are
Gaussian states, via Wick’s theorem. Concretely, for fer-
mionic systems we have (lemma 6 in [44])�Ym

k¼1

cik

�
β

¼ PfðΓ½i1;…; im�Þ; ð18Þ

where Pf is the Pfaffian and Γ has matrix elements

ðΓ½i1;…; im�Þa;b ≔

8><
>:

hciacibiβ if a < b;

−hcibciaiβ if a > b;

0 otherwise:

ð19Þ

In particular, for the density-density correlations we find

corrβðni; njÞ ¼ ha†i aia†jajiβ − ha†i aiiβha†jajiβ ð20Þ
¼ ha†i ajiβhaia†jiβ − ha†i a†jiβhaiajiβ: ð21Þ

Thus with theorem 3 we can bound density-density corre-
lations, aswell as higher order correlation functions between
even and odd operators in quadratic models.
Numerical analysis.—We now present the numerical

results on the decay of density-density correlations between
two sites separated by a distance l for different values of the
chemical potentials μ, inverse temperatures β, and inter-
action decay exponents α. We consider different chain
lengths (L ∈ f500; 1000; 2000g) in order to identify the
influence of finite size effects. We observe that asymptoti-
cally correlations decay power-law-like for any temperature
and interaction strength [45], that is for all i and large l

corrðni; niþlÞ ∝ l−ν; ð22Þ
where ν characterizes the decay of the correlations. Away
from the critical point, we observe that ν depends on α. At
the quantum critical point (T ¼ 0, μ ¼ 1) we observe
universal behavior with ν being independent of α, namely,
ν ≈ 2. Everywhere else we find ν ≈ 2 when α ≤ 1 and ν ≈
2α when α > 1 (see Fig. 1). These results are in agreement
with the results for the ground state in [8].
Application and discussion of the analytical bound.—

Let us now apply theorem 3 to the Kitaev chain. As the
model is quadratic, we can use Eq. (20) to express the
density-density correlations in terms of expectation values
of odd operators and apply theorem 3. This yields for any
0 < ϵ < 1

corrβðni; njÞ ∈ Oðl−2ð1−ϵÞαÞ ð23Þ
for any finite temperature T > 0 and for any α > 2D.
A comparison with the numerics shows that theorem 3 is

asymptotically tight. The shaded region in Fig. 1 is the
range of decay exponents excluded by theorem 3. Despite
the simplicity of the Kitaev chain, it shows correlations that
are asymptotically as strong as possible for any fermionic
system with power-law decaying two-site interactions.
Further, the restriction to T > 0 of theorem 3 is not an
artifact of our proof strategy but correlations actually do
decay slower at the quantum critical point at T ¼ 0
and μ ¼ 1.
By performing a first-order high temperature expansion

one can see that this model can be expected to essentially
asymptotically saturate the bound from theorem 3 for
T → ∞. For simplicity, consider only the long-range part
of the Hamiltonian (t ¼ 0); then whenever correlations are
analytic around β ¼ 0 (not the case for α < 1) one has in
the limit β → 0

jcorrða1; ajÞβj ¼ jtrða1aje−βHLRÞ=trðe−βHLRÞj ð24Þ
≥ jtrða1ajβHLRÞ=2L −Oðβ2Þj ð25Þ
¼ jβΔd−αj−1=4 −Oðβ2Þj: ð26Þ

More generally, for an arbitrary system with local dimen-
sion D and two-site interacting Hamiltonian H ≔

P
i;jHi;j

and any two traceless on-site operators Ai, Bj one finds that
if there is an interval ½0; β0� in which corrβðAi; BjÞ is
analytic, then for all β ∈ ½0; β0�

jcorrðAi; BjÞβj ≥ jβD−LtrðAiBjHi;jÞ −Oðβ2Þj: ð27Þ
One expects such systems to have the strongest decay of
correlations at high temperatures. As they can essentially

FIG. 1. Exponent ν as a function of the exponent of the
interactions decay α extracted from the data for L ¼ 2000.
The blue, orange, and green lines correspond to μ ¼ 0.5, 1.0,
1.5. The line styles correspond to the inverse temperatures
β ¼ 0.1; 1.0;∞. Exponents inside the shaded region are excluded
by theorem 3 whenever T > 0. For high temperatures and α < 1
finite size effects slightly distort the results; for large α the finite
precision is the limiting factor.

PRL 119, 110601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 SEPTEMBER 2017

110601-4



What it takes to shun equilibration | A short digression into long-range systems. . . 5 / 22

Methods

Combination of

Integral representation of corrβ(A,B) [4] and

Lieb-Robinson bounds [5]

x

t

nearest neighbour/
finite-range

power-law decaying/
long-range

[4] M. B. Hastings, Phys. Rev. Lett., 93.12 (2004), 126402

[5] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov, Phys. Rev. Lett., 114.15 (2015), 157201
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Motivation

Central question:

How difficult is it to bring a quantum many-
body system permanently out of equilibrium?
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Some context
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Equilibration
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Equilibration

Theorem (Equilibration on average)

If H has non-degenerate energy gaps, then for every initial state
ρ = |ψ0〉〈ψ0| there exists a state ωH(ρ) such that

for all observables A
(

Tr(Aρ(t))− Tr(AωH(ρ))
)2 ≤ ‖A‖2∞

deff
H (ρ)

for all subsystems S D
(
ρS(t), ωSH(ρ)

)
≤ 1

2

√
d2
S

deff
H (ρ)

and actually ωH(ρ) = ρ(t) =
∑

k |Ek〉〈Ek|ρ|Ek〉〈Ek|

.

[7] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett., 100.3 (2008), 30602
[8] P. Reimann, Phys. Rev. Lett., 101.19 (2008), 190403
[9] N. Linden, S. Popescu, A. Short, and A. Winter, Phys. Rev. E, 79.6 (2009), 61103
[10] A. J. Short and T. C. Farrelly, New J. Phys., 14.1 (2012), 013063
[11] P. Reimann and M. Kastner, New J. Phys., 14.4 (2012), 43020
[12] C. Gogolin and J. Eisert, Reports Prog. Phys., 79.5 (2016), 56001
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Non-degenerate energy gaps

H has non–degenerate energy gaps iff:

Ek − El = Em − En

=⇒ k = l ∧m = n ∨ k = m ∧ l = n

E

6=

Intuition: Sufficient for H to be fully interactive

H 6= H1⊗1 + 1⊗H2
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= 2S2(ωH(ρ))

It is huge for states with reasonable energy uncertainty!

deff
H (ρ) ≈ 21023

Intuition: Dimension of supporting energy subspace

It is huge for typical states from unitary invariant ensembles

Also known as participation ratio and widely used

Why the Rényi two entropy?

Sα(ω) :=
1

1− α
log(Tr(ωα))

Alternatives? Yes! In terms of the second largest population [11].
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Motivation

Central questions:

How difficult is it to avoid equilibration?
Can we quantify this in a resource theoretic way?

Which other equilibration bounds can we hope to prove?
How arbitrary is the choice of the two entropy?
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Resilience against equilibration

R(ρ,H) := log

(
d

deff
H (ρ)

)

= D2

(
ωH(ρ)‖1/d

)
Properties:

High resilience is necessary condition for avoiding equilibration.

Additive on stationary uncoupled product states

R(σQ ⊗ σR, HQ +HR) = R(σQ, HQ) +R(σR, HR).

Non-increasing under unital maps

R(Λ(σ), H) ≤ R(σ,H).
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Results
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The resilience as a resource

Theorem (No resilience for free)

Given σQ ⊗ σ̂R stationary and HQR
i and HQR

f non-interacting

R(ρQ, HQ
f )−R(σQ, HQ

i ) =:

∆RQ ≤ R(σR, HR
i ).

Doesn’t mean we need to spend the resilience! But:

Theorem (Without correlations resilience is a resource)

If in addition ρQR = ρQ ⊗ ρR

∆RQ ≤ −∆RR.
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Catalytic processes

Consider a family of systems of increasing number of sub-systems n.

Theorem (No “second law of equilibration”)

There are (natural) stationary states σQn and Hamiltonians such that for
every ε > 0 there exist states σRn and a mixture of unitaries Λ such that:

ρQn has diverging resilience and does not equilibrate.

The resource is exactly preserved ρRn = σRn .

The correlations between Q and R are ε small

I(Q : R) := D1(ρQRn ‖ρQn ⊗ ρRn ) ≤ ε.

Highlights the importance of interactions!

Builds on results from M. P. Mueller, (2017), arXiv: 1707.03451

http://arxiv.org/abs/1707.03451
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Can this be repaired?

It could, if one could prove equilibration inequalities of the form(
Tr(Aρ(t))− Tr(AωH(ρ))

)2 ≤ ‖A‖2∞ 2−S1(ωH(ρ)).

This would lead to a sub-additive notion of resilience.

But this is not possible. As one can easily construct families of states
that

do not equilibrate,
but have a diverging S1(ωH(ρ)).

The remaining entropies are all similar ∀α > 1: α−1
α Sα ≤ S∞ ≤ Sα

and non of them sub-additive.

Maybe physical restrictions on Λ can fix this?
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Which “powerful lessons” have we learned?

Thank you for your attention!

Equilibration appears as a natural consequence of unitary dynamics. . .

. . . and is extremely hard to avoid.

The resilience has several desirable properties for therm. resource. . .

. . . but there is no second law of “non-equilibratingness”.

This is not our fault: no equilibration inequality based on the von
Neumann entropy can hold.

What about more physical maps Λ, like energy preserving operations?

What about equilibration results based on the second largest
population?

Ask me about Quantum

1

!
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