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Machine learning quantum systems

| foresee a bright future because:
There is BIG data

Everybody can generate it

Classification and control problems are everywhere
People are used to heuristics

Applications are not safety critical
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Phase transitions and their characterization

in the 2D ferromagnetic Ising model with disorder
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Can do machine learning necessary, but not really necessary. ..
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Many-body localization

in the Heisenberg chain with disorder
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Many-body localization

in the Heisenberg chain with disorder
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. "Bl 1 m No local oder parameter

m No universally accepted
order parameter

m Do not agree within
error bars

m strong finite size effects

m 10.000 disorder averages

Machine learning to the
rescue?
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Domain-Adversarial Neural Networks

& Phase discriminatorJ

@

Adversarial

m No need to know the phase boundary

m No manual feature engineering
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Datapoints: ~ DANN N = 18, 500 real. vs. AAGR N = 22, 1.000-10.000 real.

m Superior statistical properties
m Vastly less disorder averaging
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Quantum optimization and machine learning

Probably the first relevant application because:

m Unlocks objective functions and kernel maps that a classical computer
cannot calculate

No error correction/fault tolerance needed

Some quantum many-body and chemistry problems naturally map to
quantum hardware

Hybrid quantum classical computation

m There is now software to do the training/optimization. ..
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Variational quantum circuits
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Automatic differentiation
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Enter PennylLane

PENNYLANE

is a library for quantum optimization and machine learning that:

Enables optimization via automatic differentiation
Built for hybrid quantum-classical computation
Is hardware agnostic and extensible via plugins

Open-source and extensively documented

We hope to become the PyTorch of quantum machine learning
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PENNYLANTE

Let’s see this in action!
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Summary

Thank you for your attention!

m Adversarial domain adaptation for delineating phase transitions

m Objective estimate of the phase boundary

m Superior statistical properties

m Semi un-supervised

m Opens up way to investigate how the network discriminates phases

m Pennylane

m Easy to use PyTorch style automatic differentiation for QML
m Hardware agnostic and extensible



