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David J. Luitz, Nicolas Laflorencie, and Fabien Alet
Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France∗

(Dated: November 3, 2014)

We present a large scale exact diagonalization study of the one dimensional spin 1/2 Heisenberg
model in a random magnetic field. In order to access properties at varying energy densities across
the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can
be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation of
the many body localization transition including the existence of an extensive many-body mobility
edge. The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-
law entanglement, and a full delocalization in the Hilbert space. Conversely, the localized regime
displays Poisson statistics, area-law entanglement and non ergodicity in the Hilbert space where
a true localization never occurs. We perform finite size scaling to extract the critical edge and
exponent of the localization length divergence.

PACS numbers: 75.10.Pq, 72.15.Rn, 05.30.Rt

The interplay of disorder and interactions in quan-
tum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following pre-
cursors works [1–4], perturbative calculations [5, 6] have
established that the celebrated Anderson localization [7]
can survive interactions, and that for large enough dis-
order, many-body eigenstates can also “localize” (in a
sense to be precised later) and form a new phase of matter
commonly referred to as the many-body localized (MBL)
phase.

The enormous boost of interest for this topic over the
last years can probably be ascribed to the fact that the
MBL phase challenges the very foundations of quantum
statistical physics, leading to striking theoretical and ex-
perimental consequences [8, 9]. Several key features of
the MBL phase can be highlighted as follows. It is non-
ergodic, and breaks the eigenstate thermalization hy-
pothesis (ETH) [10–12]: a closed system in the MBL
phase does not thermalize solely following its own dy-
namics. The possible presence of a many-body mobility
edge (at a finite energy density in the spectrum) indi-
cates that conductivity should vanish in a finite tem-
perature range in a MBL system [5, 6]. Coupling to
an external bath will eventually destroy the properties
of the MBL phase, but recent arguments show that it
can survive and be detected using spectral signatures for
weak bath-coupling [13]. This leads to the suggestion
that the MBL phase can be characterized experimen-
tally, using e.g. controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–
17]. Another appealing aspect (with experimental con-
sequences for self-correcting memories) is that MBL sys-
tems can sustain long-range, possibly topological, order
in situations where equilibrated systems would not [18–
22]. Finally, a striking phenomenological approach [23]
pinpoints that the MBL phase shares properties with in-
tegrable systems, with extensive local integrals of mo-

Figure 1. Disorder (h) — Energy density (ε) phase dia-
gram of the disordered Heisenberg chain Eq. (1). The er-
godic phase (dark region with a participation entropy vol-
ume law coefficient a1 ' 1) is separated from the localized
regime (bright region with a1 � 1). Various symbols (see
legend) show the energy-resolved MBL transition points ex-
tracted from finite size scaling performed over system sizes
L ∈ {14, 15, 16, 17, 18, 19, 20, 22}. Red squares correspond to
a visual estimate of the boundary between volume and area
law scaling of entanglement entropy SE .

tion [24–26], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates
at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.

Going beyond perturbative approaches, direct numer-
ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [14, 17, 21, 27–42]. The MBL
transition dealing with eigenstates at high(er) energy,
ground-state methods are not well adapted. Most nu-
merical studies use full exact diagonalization (ED) to ob-
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perimental consequences [8, 9]. Several key features of
the MBL phase can be highlighted as follows. It is non-
ergodic, and breaks the eigenstate thermalization hy-
pothesis (ETH) [10–12]: a closed system in the MBL
phase does not thermalize solely following its own dy-
namics. The possible presence of a many-body mobility
edge (at a finite energy density in the spectrum) indi-
cates that conductivity should vanish in a finite tem-
perature range in a MBL system [5, 6]. Coupling to
an external bath will eventually destroy the properties
of the MBL phase, but recent arguments show that it
can survive and be detected using spectral signatures for
weak bath-coupling [13]. This leads to the suggestion
that the MBL phase can be characterized experimen-
tally, using e.g. controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–
17]. Another appealing aspect (with experimental con-
sequences for self-correcting memories) is that MBL sys-
tems can sustain long-range, possibly topological, order
in situations where equilibrated systems would not [18–
22]. Finally, a striking phenomenological approach [23]
pinpoints that the MBL phase shares properties with in-
tegrable systems, with extensive local integrals of mo-

Figure 1. Disorder (h) — Energy density (ε) phase dia-
gram of the disordered Heisenberg chain Eq. (1). The er-
godic phase (dark region with a participation entropy vol-
ume law coefficient a1 ' 1) is separated from the localized
regime (bright region with a1 � 1). Various symbols (see
legend) show the energy-resolved MBL transition points ex-
tracted from finite size scaling performed over system sizes
L ∈ {14, 15, 16, 17, 18, 19, 20, 22}. Red squares correspond to
a visual estimate of the boundary between volume and area
law scaling of entanglement entropy SE .

tion [24–26], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates
at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.

Going beyond perturbative approaches, direct numer-
ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [14, 17, 21, 27–42]. The MBL
transition dealing with eigenstates at high(er) energy,
ground-state methods are not well adapted. Most nu-
merical studies use full exact diagonalization (ED) to ob-
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We present a large scale exact diagonalization study of the one dimensional spin 1/2 Heisenberg
model in a random magnetic field. In order to access properties at varying energy densities across
the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can
be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation of
the many body localization transition including the existence of an extensive many-body mobility
edge. The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-
law entanglement, and a full delocalization in the Hilbert space. Conversely, the localized regime
displays Poisson statistics, area-law entanglement and non ergodicity in the Hilbert space where
a true localization never occurs. We perform finite size scaling to extract the critical edge and
exponent of the localization length divergence.
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tion [24–26], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates
at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.

Going beyond perturbative approaches, direct numer-
ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [14, 17, 21, 27–42]. The MBL
transition dealing with eigenstates at high(er) energy,
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ably well-isolated systems with dipolar interactions [14–
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tems can sustain long-range, possibly topological, order
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tion [24–26], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates
at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.

Going beyond perturbative approaches, direct numer-
ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
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transition dealing with eigenstates at high(er) energy,
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Automated discovery of characteristic features of phase transitions in many-body localization
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We identify a new “order parameter” for the disorder driven many-body localization (MBL) transition by
leveraging artificial intelligence. This allows us to pin down the transition, as the point at which the physics
changes qualitatively, from vastly fewer disorder realizations and in an objective and cleaner way than is possi-
ble with the existing zoo of quantities. Contrary to previous studies, our method is almost entirely unsupervised.
A game theoretic process between neural networks defines an adversarial setup with conflicting objectives to
identify what characteristic features to base efficient predictions on. This reduces the numerical effort for map-
ping out the phase diagram by a factor of 100x. This approach of automated discovery is applicable specifically
to poorly understood phase transitions and exemplifies the potential of machine learning assisted research in
physics.

Introduction Can artificial intelligence (AI) offer a quali-
tative advantage by assisting scientific discovery? Or is it just
a new tool for numerical calculations? Machine learning has
been making headlines in computational physics: it proved
remarkably efficient in giving comparable accuracy to known
methods for the study of phase transitions [1–5]. We show
that state-of-the-art AI is capable of more, by automating the
discovery of robust characteristic features that enable a more
efficient investigation of physical effects.

An example where AI assistance is much needed is the
delineation and characterization of the many-body localized
(MBL) phase, exhibited by systems with many interacting
quantum particles experiencing a (strong enough) static dis-
ordered background potential. This research problem has at-
tracted an immense amount of attention recently [6–13] be-
cause MBL challenges long-held believes about the phase
structure of isolated systems and even the applicability of
standard equilibrium statistical mechanics, which no longer
correctly captures the long-time behavior in that phase. Many
details of how this breakdown happens remain elusive, despite
an extensive and ongoing debate [8, 10, 11, 13]. Our work
addresses two major roadblocks preventing further progress:
First, it yet remains unclear what the best approach is to de-
lineate the MBL phase. Physicists have come up with a whole
zoo of quantities whose behavior can serve as an indicator for
the transition, but the various phase boundaries they imply, do
not agree within error bars [9] and controlling finite-size ef-
fects is a challenge [14]. Second, all of these quantities need to
be averaged over an enormous number of disorder realizations
(often 10.000 [7, 9, 15]) to get meaningful results. Highly op-
timized codes allow in principle to study systems of up to 26
spins [12], but with the known quantities, going beyond 22
spins is prohibitively expensive [12].

Through AI assisted research, we obtain a quantity captur-
ing features of the MBL transition that is so powerful that up
to 100x fewer disorder realizations are sufficient to obtain ob-
jective and more accurate predictions of the transition point.
We thereby reduce the cognitive load of the scientist by au-
tomating feature extraction by means of a game theoretical
process in the state-of-the-art adversarial domain adaptation

Adversarial

Phase discriminator

vs

FIG. 1. By using a contemporary neural network architecture,
we automate feature extraction and drastically reduce computational
cost at the same time. To achieve this higher level of automation, a
pair of neural networks share a pipeline for feature extraction. They
compete in a game theoretic framework to achieve conflicting goals:
one network has to classify states according to their phase and the
other is supposed to tell from how deep in the phase they are. The
equilibrium of the game tells what features to base predictions on
and allows to determine the phase boundary in a largely unsuper-
vised way.

technique (Figure 1).
Automated feature extraction If the phases are well un-

derstood, standard supervised deep learning can be used to
find out which phase a test state comes from [2, 3, 5]. Un-
supervised techniques have so-far only been used in classi-
cal systems [4] or rely on the knowledge that manually engi-
neered features, such as the entanglement spectrum, capture
the physics of the phase transition [1].

The problem we want to solve here, however, is qualita-
tively different. We want to automatically learn the unknown
location of a phase boundary in a largely unsupervised way
and without engineering features by hand in a phase transi-
tion of a quantum model that remains a challenge for existing
methods.

We achieve this by means of adversarial domain adapta-
tion [16, 17], a technique in which two neural networks are
competing in a game. The networks share a common feature
extraction pipeline that consists of convolutional and pooling
layers as in ordinary deep learning (Figure 1). Two types of
input data are fed into the shared pipeline. The first type has
labels. For instance, we can easily select states deep inside the
phases and confidently label them. The second type of data
contains points for which the label is unknown. This can be
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other is supposed to tell from how deep in the phase they are. The
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Automated feature extraction If the phases are well un-

derstood, standard supervised deep learning can be used to
find out which phase a test state comes from [2, 3, 5]. Un-
supervised techniques have so-far only been used in classi-
cal systems [4] or rely on the knowledge that manually engi-
neered features, such as the entanglement spectrum, capture
the physics of the phase transition [1].

The problem we want to solve here, however, is qualita-
tively different. We want to automatically learn the unknown
location of a phase boundary in a largely unsupervised way
and without engineering features by hand in a phase transi-
tion of a quantum model that remains a challenge for existing
methods.

We achieve this by means of adversarial domain adapta-
tion [16, 17], a technique in which two neural networks are
competing in a game. The networks share a common feature
extraction pipeline that consists of convolutional and pooling
layers as in ordinary deep learning (Figure 1). Two types of
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derstood, standard supervised deep learning can be used to
find out which phase a test state comes from [2, 3, 5]. Un-
supervised techniques have so-far only been used in classi-
cal systems [4] or rely on the knowledge that manually engi-
neered features, such as the entanglement spectrum, capture
the physics of the phase transition [1].

The problem we want to solve here, however, is qualita-
tively different. We want to automatically learn the unknown
location of a phase boundary in a largely unsupervised way
and without engineering features by hand in a phase transi-
tion of a quantum model that remains a challenge for existing
methods.

We achieve this by means of adversarial domain adapta-
tion [16, 17], a technique in which two neural networks are
competing in a game. The networks share a common feature
extraction pipeline that consists of convolutional and pooling
layers as in ordinary deep learning (Figure 1). Two types of
input data are fed into the shared pipeline. The first type has
labels. For instance, we can easily select states deep inside the
phases and confidently label them. The second type of data
contains points for which the label is unknown. This can be
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Comparison with other “oder parameters”

2

states from all over the phase space, including, in particular,
such from around the suspected position of the phase bound-
ary.

The first neural network receives only the first type of data.
Its goal is to maximize prediction accuracy of the label. If the
architecture did not have more components, this would be a
similar scenario to the ones discussed in previous work [1–5].
The key difference is that this first network has an adversary,
who receives both types of data and is tasked with guessing
whether a data point is labeled or not. The common feature
extraction pipeline is adjusted to make the task of the first net-
work as easy as possible while making that of the second as
hard as possible. This is achieved by means of error backprop-
agation from both networks, but with opposite signs. When
the game reaches equilibrium, the representation layer selects
features that are best suitable to identify which phase a state
comes from, but contain virtually no information about from
where inside the phase they are.

More formally, the phase discriminator is endowed with a
loss function Ld that it tries to minimize. This function de-
pends on two sets of parameters: θd, which are the parameters
describing only the phase discriminator neural network, and
θf , which are the parameters describing the feature extraction
layers. The loss function La of the adversary is a function of
θf and the parameters θa describing this network alone. The
game is about achieving an equilibrium in θf , through the up-
date rule ∆θf = µ(∂Ld

∂θf
− ∂La

∂θf
), where µ is the learning rate.

The opposite sign in the gradient update expresses the compe-
tition between the networks.

This competitive process enables the learning algorithm to
autonomously figure out a (possibly non-local) “order param-
eter”, pinpointing where the physics changes qualitatively.
The last layer of the phase predictor gives the probability that
an input state is part of one or the other phase. We can then
discard the adversary and use only the output of the first neu-
ral network to predict all labels. To decrease the noise close to
the phase boundary this output can be averaged over several
disorder realizations. The learning is completed and when the
predicted labels no longer change.

Results We apply the adversarial network architecture to
the problem of delineating the MBL phase boundary in the
prototypical spin-1/2 Heisenberg chain in a random magnetic
field, described by the Hamiltonian

H =
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with σx,y,zi the Pauli matrices on site i and the hi are drawn
from the uniform distribution over [−h, h]. We denote the nor-
malized energy by ε ∈ [0, 1], which interpolates between the
lowest and highest of the energies of H for a given realization
of the disordered fields hi and restrict to the global magnetiza-
tion zero subspace. The eigenstates of this model are known
to undergo an MBL transition at an energy dependent critical
disorder strength hc, whose precise position is however diffi-
cult to determine with established methods. The most widely
used method to detect the MBL transition is the average ad-
jacent gap ratio r [9, 15], which goes from rWD ≈ 0.53, re-
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FIG. 2. The output of the neural network directly provides a mean-
ingful estimate of the phase diagram for a finite system N = 12
(background in (a)) from just 50 disorder realizations, while tradi-
tional quantities, like the gap statistics (background in (b)) are still
far too noisy. The dots in (a) are the extrapolated phase boundary in
the thermodynamic limit obtained from 100 disorder realizations via
the data collapse for systems up to N = 18, shown exemplary for
ε = 0.5 in Figure 3. The symbols in (b) are the phase boundaries
found in [9] based on the average adjacent gap ratio r (triangles) and
the dynamical spin fraction f (triangles pointing downwards) for sys-
tems of size up to N = 22 and vastly more disorder realizations.

sulting from the Wigner-Dyson distributed eigenvalues in the
ergodic phase, to rPoisson ≈ 0.38, reflecting the Poisson statis-
tics in the MBL phase. Another quantity is the dynamical spin
fraction f , which varies from 1 to 0 [7, 9].

We generate eigenstates from small windows around sev-
eral values of ε and for multiple disorder realizations at dif-
ferent disorder strengths h for system sizes up to N = 18
spins with the shift invert code from [12] (Details in Suple-
mentaries III). For the training of the network we use as the
first type of data states from two sets deep inside the phases.
For the second type we generate states from a wide range of ε
and h values that including the phase boundary (see Figure 1).

We compare the estimate of the energy resolved phase di-
agram obtained from the adversarial neural network with re-
sults based on the average adjacent gap ratio r and the dynam-
ical spin fraction f . The superior statistical properties of our
approach are apparent. Already from only 50 disorder realiza-
tions we obtain a clear characterization of the phases, while
the average adjacent gap ratio is still very noisy (background
in Figure 2).

The phase boundary shown in Figure 2(a) can be deter-
mined via a data collapse from plots such as that shown in
Figure 3 for ε = 0.5. To extract the critical magnetic field
strength hc, we use a scaling function of the same form
g(N1/ν(h − hc)) as that for the average adjacent gap ratio
r. The reduction in noise allows for a more precise determi-
nation of the phase boundary for the same number of disorder
realizations. From just data for systems up to size N = 18
(100 disorder realizations) we are able to determine the phase
boundary extrapolated to the thermodynamic limit to an accu-
racy roughly matching the discrepancy between the conven-
tional quantities r and f determined in the numerically much
more expensive study [9]. Intuitively, it makes sense that the
average adjacent gap ratio does not have the nice averaging

DANN N = 12, 50 real. vs AAGR N = 12, 50 real.

DANN N = 18, 500 real. vs. AAGR N = 22, 1.000-10.000 real.

Background:

Datapoints:

Superior statistical properties
Vastly less disorder averaging
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Comparison with other “oder parameters”

2

states from all over the phase space, including, in particular,
such from around the suspected position of the phase bound-
ary.
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discard the adversary and use only the output of the first neu-
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sulting from the Wigner-Dyson distributed eigenvalues in the
ergodic phase, to rPoisson ≈ 0.38, reflecting the Poisson statis-
tics in the MBL phase. Another quantity is the dynamical spin
fraction f , which varies from 1 to 0 [7, 9].

We generate eigenstates from small windows around sev-
eral values of ε and for multiple disorder realizations at dif-
ferent disorder strengths h for system sizes up to N = 18
spins with the shift invert code from [12] (Details in Suple-
mentaries III). For the training of the network we use as the
first type of data states from two sets deep inside the phases.
For the second type we generate states from a wide range of ε
and h values that including the phase boundary (see Figure 1).

We compare the estimate of the energy resolved phase di-
agram obtained from the adversarial neural network with re-
sults based on the average adjacent gap ratio r and the dynam-
ical spin fraction f . The superior statistical properties of our
approach are apparent. Already from only 50 disorder realiza-
tions we obtain a clear characterization of the phases, while
the average adjacent gap ratio is still very noisy (background
in Figure 2).

The phase boundary shown in Figure 2(a) can be deter-
mined via a data collapse from plots such as that shown in
Figure 3 for ε = 0.5. To extract the critical magnetic field
strength hc, we use a scaling function of the same form
g(N1/ν(h − hc)) as that for the average adjacent gap ratio
r. The reduction in noise allows for a more precise determi-
nation of the phase boundary for the same number of disorder
realizations. From just data for systems up to size N = 18
(100 disorder realizations) we are able to determine the phase
boundary extrapolated to the thermodynamic limit to an accu-
racy roughly matching the discrepancy between the conven-
tional quantities r and f determined in the numerically much
more expensive study [9]. Intuitively, it makes sense that the
average adjacent gap ratio does not have the nice averaging

DANN N = 12, 50 real. vs AAGR N = 12, 50 real.

DANN N = 18, 500 real. vs. AAGR N = 22, 1.000-10.000 real.

Background:

Datapoints:

Superior statistical properties
Vastly less disorder averaging



MLQ ↔ QML | Machine learning quantum systems 8 / 15

Outline

0 Foundations of quantum statistical mechanics

1 Machine learning quantum systems

2 Software for quantum machine learning



MLQ ↔ QML | Quantum optimization and machine learning 9 / 15

Quantum optimization and machine learning

Probably the first relevant application because:

Unlocks objective functions and kernel maps that a classical computer
cannot calculate

No error correction/fault tolerance needed

Some quantum many-body and chemistry problems naturally map to
quantum hardware

Hybrid quantum classical computation

There is now software to do the training/optimization. . .
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Hybrid quantum classical computation
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Variational quantum circuits
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Automatic differentiation
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Enter PennyLane

is a library for quantum optimization and machine learning that:

Enables optimization via automatic differentiation

Built for hybrid quantum-classical computation

Is hardware agnostic and extensible via plugins

Open-source and extensively documented

We hope to become the PyTorch of quantum machine learning
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Let’s see this in action!
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Summary

Thank you for your attention!

Adversarial domain adaptation for delineating phase transitions

Objective estimate of the phase boundary
Superior statistical properties
Semi un-supervised
Opens up way to investigate how the network discriminates phases

PennyLane

Easy to use PyTorch style automatic differentiation for QML
Hardware agnostic and extensible
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