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Old questions and new results

How do quantum mechanics and
statistical mechanics go together?
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“There is no line of argument proceding from
the laws of microscopic mechanics to macroscopic
phenomena that is generally regarded by physicists
as convincing in all respects.”

— E. T. Jaynes [1] (1957)

“Statistical physics [...] has not yet developed
a set of generally accepted formal axioms [...]"

— Jos Uffink [2] (2006)
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Pure state quantum statistical mechanics = Setting

Setting
H=Hs+Hp+Hsp p(t) = [ (t)) ((t)]
Subsystem, Hg Bath, Hp
ds dp > dg
9 Hgsp
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Equilibration

Theorem (Equilibration on average [9])

If H has non-degenerate energy gaps, then for every p(0) = |¢o) (o]
there exists a w® such that:

D (p5(t),w”) < 3 d

[7] M Cramer, C. M. Dawson, J Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
[8] P. Reimann, Physical Review Letters, 101.19 (2008), 190403

[9] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103

[10] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063

[11] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 43020



Non-degenerate energy gaps
H has non—degenerate energy gaps iff:
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Intuition: Sufficient for H to be fully interactive
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Equilibration

Theorem (Equilibration on average [9])

If H has non-degenerate energy gaps, then for every p(0) = |¢o) (o]
there exists a w® such that:

D (p5(t),w”) < 3 d

[7] M Cramer, C. M. Dawson, J Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
[8] P. Reimann, Physical Review Letters, 101.19 (2008), 190403

[9] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103

[10] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063

[11] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 43020



Effective dimension

deff . 1

3k B0y [*

Intuition: Dimension of supporting energy subspace
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Equilibration

Theorem (Equilibration on average [9])

If H has non-degenerate energy gaps, then for every p(0) = |¢o) (o]
there exists a w® such that:

= If d°F > d2% then p5(¢) equilibrates on average.

[7] M Cramer, C. M. Dawson, J Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
[8] P. Reimann, Physical Review Letters, 101.19 (2008), 190403

[9] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103

[10] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063

[11] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 43020
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Maximum entropy principle

Theorem (Maximum entropy principle [12])

If Tr[A p(t)] equilibrates on average, it equilibrates towards its time
average

Te[A ()] = Tr[A p(t)] = Tr[Aw],

and w is the state that maximizes the von Neumann entropy, given all
conserved quantities.

[12] C. Gogolin, M. P. Miiller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401
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Time averaging

p(0) — w is a pinching = w maximizes entropy
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Maximum entropy principle

Theorem (Maximum entropy principle [12])

If Tr[A p(t)] equilibrates on average, it equilibrates towards its time
average

Te[A ()] = Tr[A p(t)] = Tr[Aw],

and w is the state that maximizes the von Neumann entropy, given all
conserved quantities.

= Maximum entropy principle from pure quantum dynamics.

[12] C. Gogolin, M. P. Miiller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401
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Maximum entropy principle

Theorem (Maximum entropy principle [12])

If Tr[A p(t)] equilibrates on average, it equilibrates towards its time
average

Te[A ()] = Tr[A p(t)] = Tr[Aw],

and w is the state that maximizes the von Neumann entropy, given all
conserved quantities.

= Maximum entropy principle from pure quantum dynamics.

[12] C. Gogolin, M. P. Miiller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401



Interesting open questions:

m Do we really need all (exponentially many) conserved
quantities?

m If not, then which?

m Does this depend on integrability of the model?

m What is the relation to the GGE?




Pure state quantum statistical mechanics | Decoherence and the speed of fluctuations

Decoherence and the speed of fluctuations



Pure state quantum statistical mechanics | Decoherence and the speed of fluctuations

Speed of the fluctuations around equilibrium

1

[13] N. Linden, S. Popescu, A. J. Short, and A. Winter, New Journal of Physics, 12.5 (2010), 055021



Speed of the fluctuations around equilibrium

_ 1][dp°(®)

us(t) = & H s dpS(t)

. dt

=i Trp[y(t), H]

[13] N. Linden, S. Popescu, A. J. Short, and A. Winter, New Journal of Physics, 12.5 (2010), 055021
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Speed of the fluctuations around equilibrium

os(t) = 5 |52

. dt

=i Trp[y(t), H]

Theorem (states are slow most of the time [13])
For every p(0) = [¢0) (0l

- d3
vs(t) < | Hs @1 4+ Hsp |0 dewa)'

[13] N. Linden, S. Popescu, A. J. Short, and A. Winter, New Journal of Physics, 12.5 (2010), 055021



Pure state quantum statistical mechanics | Decoherence and the speed of fluctuations

Speed of the fluctuations around equilibrium

os(t) = 5 |52

=i Trp[y(t), H]

. dt

Theorem (states are slow most of the time [13])
For every p(0) = [¢0) (0l

- d3
vs(t) < || Hs®1 + Hsp “o‘”/de?fw)'

= If d*f(w) > d? then p(t) is slow most of the time.

[13] N. Linden, S. Popescu, A. J. Short, and A. Winter, New Journal of Physics, 12.5 (2010), 055021
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When can a subsystem be slow?

Given the interaction is weak
| HsB lloo < || Hs |00

when is the subsystem slow ?

1 || dp®(t)
t) ==
vs(t) 2H |
dp® (t

:iT‘rB[p(t),H0+H5®]l+]1®HB+HSB]
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When can a subsystem be slow?

Given the interaction is weak
| HsB lloo < | Hs oo,
when is the subsystem slow ?

us(t) = 5 |22

1

dp® (t
dt

) = Trglp(t), H]

:iT‘rB[p(t),H0+H5®]l +1 ®HB+HSB]
=i Trp[p(t), Hs @1 + Hgp]
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Two competing forces

=i[p°(t), Hs] +1 Trp[p(t), Hsp]
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Decoherence through weak interaction

Theorem

max

{(k,1)}

ZQ|Ek

(k1)

BSl 18] < 2] Hsp [l + H

dp (t)
dt

1
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Decoherence through weak interaction

Theorem
Si| .S dp(t)
max  2|E; — B[ oy < 2[| Hsp lloo +
{Us0)} dt ||,

(k1)

Decoherence in the Hg
eigenbasis
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Decoherence through weak interaction

Theorem
dp (t)
max ZZ|Ek EP|p) <21 Hsp lloo +
{(k1)} dat ||,

(k1)

Decoherence in the Hg No Schrodinger’s cat states
eigenbasis
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Typicality of expectation values

Theorem (most pure states look like microcanonical states [14])

Let £ C H, d = dim(K) and Ik the projector onto K.
For randomly chosen pure states |1)) € K and every € > 0

Pr{’ Tr(Av) — Tr(A%)

‘ Cdeé?
K

> 6} <2e l4l%

with C = (36 73)~L.

[14] S. Popescu, A. J. Short, and A. Winter, Nature Physics, 2.11 (2006), 754-758
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Typicality of expectation values

Theorem (most pure states look like microcanonical states [14])

Let £ C H, d = dim(K) and Ik the projector onto K.
For randomly chosen pure states |1)) € K and every € > 0

Pr{’ Tr(A4) — Tr(A%)‘ >ep<2e Sz

K
with C = (36 73)~L.

= Can be thought of as a justification of the equal a priory probability
postulate

[14] S. Popescu, A. J. Short, and A. Winter, Nature Physics, 2.11 (2006), 754-758
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Thermalization

Q
Equilibrate? -
Yes No
Thermalize?
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Pure state quantum statistical mechanics = Thermalization

Thermalization is a complicated process

Thermalization implies:
Equilibration [7-11, 15]
Subsystem initial state independence [12, 16]
Weak bath state dependence [17]
Diagonal form of the subsystem equilibrium state [18]
@A Thermal state w® = Trp[w] ~ gzs(ﬁ) oce P Hs [17, 19]

7] M Cramer, C. M. Dawson, J Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
8] P. Reimann, Physical Review Letters, 101.19 (2008), 190403

9] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103
10] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063

11] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 43020

12] C. Gogolin, M. P. Miiller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401
15] J. Gemmer, M. Michel, and G. Mahler, vol. 784, Lecture Notes in Physics, Berlin, Heidelberg: Springer, 2009

16] A. Hutter and S. Wehner, Physical Review A, 87.1 (2013), 12121

17] A. Riera, C. Gogolin, and J. Eisert, Physical Review Letters, 108.8 (2012), 80402

18] C. Gogolin, Physical Review E, 81.5 (2010), 51127

19] M. P. Miiller, E. Adlam, L. Masanes, and N. Wiebe, Communications in Mathematical Physics, 340.2 (2015), 499-561
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The setting

m Local Hamiltonian (spins or fermions)

H:ZZh,\

AEE

©e-0-0-06-6-6-6-0-0
©e-0-0-06-6-6-6-06-0
©-0-0-06-06-6-6-6-0
©-0-0-0-06-6-6-0-0
- 0-0-606-6-6-6-0-0
©e-0-0-0-6-6-6-0-0
©e-0-0-0-6-6-6-06-0
©e-0-0-06-6-6-6-6-0
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The setting

-90-0-0
0-0-0-0
m L | Hamiltonian i i

ocal Hamiltonian (spins or fermions) o 0 6 o {
H — Z hy o-0-0-oflo-0-0-0
\CE - 9-90-0-0-0-0-0
-9-0-0-0-0-0-0
m Thermal state - 9-0-0-0-0-0-0
B H -9-0-0-0-0-0-0
- 9-0-0-0-0-0-0

g (B) IZW
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The setting

9-9-0-0-0-0-0-0
_ _ - 9-0-0-0-0-0-0
m Local Hamiltonian truncatedto S C V 6 6. 6.0 6.6 0 0
o 0 o0lo-0l0 0 o
Z ha £E|
- 9-0/0-0'0-0-0
AeE(S ‘ 15 ‘
©-0-0(0-0j0 00
m Thermal state - 9-0-0-0-0-0-0
0B Hs - 9-0-0-0-0-0-0
-9 -9

95(B) :m 9-0-0-0
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The setting

m Local Hamiltonian truncatedto S C V

- 0-0- 6066060
- 0-0-6-6-6-6-0

Hg = Z I -9 o‘ ‘

-9-0-0-0

AeE(S) S ‘

©-0-0(0 0|
m Thermal state - 9-0-0-0-0
Q- 9-0-0-0-0

(B) = i e 0 0 00

J T TrlefH ]
o jlo
-0
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The setting

9-9-0-0-0-0-0-0
_ _ Q|0-0-0-0-0-0|0
m Local Hamiltonian truncatedto S C V olo 0.0 606 -0lo
Z I @|lo-o ‘[—o oj‘ -9 |0
EE(S) o :”g) oSo ‘ -0 |0
Qo “0_0"4 ©0j0-0|0
m Thermal state ) OBO -0-0-90 |0
o8 Hz 9Q|0-0-0-0-0-0|0
== - 9-0-0-0-0-0-0
gB(/B) Tr[e_rBHB]

m Introduce buffer region

Trse[95(8)] = Trse[g(B)] ?
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This can be made rigorous:

Generalized covariance

covy (A, A) = Tx[p" A p' "7 A'] = Tr[p A Tr[p A')

[20] M Kliesch, C Gogolin, M. J. Kastoryano, A Riera, and J Eisert, (2013), arXiv: 1309.0816v2


http://arxiv.org/abs/1309.0816v2
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Theorem (Truncation formula [20])
For any observable A = Ag® 1
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This can be made rigorous:

Generalized covariance
covT(A, A') = Tx[p" A p' =" A] - Tr[p A] Ta[p A’

exactly captures the response of local expectation values.

Theorem (Truncation formula [20])
For any observable A = Ag® 1

TY[A gp(8)] — Tr .y / / covT 5y (Hop, A) dr ds,

where g(s, ) is thermal state of H(s) .= H — (1 —s) Hyp .

[20] M Kliesch, C Gogolin, M. J. Kastoryano, A Riera, and J Eisert, (2013), arXiv: 1309.0816v2
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Clustering of correlations

Theorem (Clustering of correlations at high temperature [20])
Let J := max) ||h)]|co, then for every 7 € [0,1] and 8 < 5*(J, )

|covT gy (A, A)| < € em AAAD/£(B)e)

with o = a(€) the lattice animal constant.

[20] M Kliesch, C Gogolin, M. J. Kastoryano, A Riera, and J Eisert, (2013), arXiv: 1309.0816v2


http://arxiv.org/abs/1309.0816v2
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Clustering of correlations

Theorem (Clustering of correlations at high temperature [20])
Let J := max) ||h)]|co, then for every 7 € [0,1] and 8 < 5*(J, )

|covT gy (A, A)| < € em AAAD/£(B)e)

with o = a(€) the lattice animal constant.

= D (gs(ﬁ)vgBS(ﬁ)) < c’ e_d(S,aB)/f(ﬁJ@)

[20] M Kliesch, C Gogolin, M. J. Kastoryano, A Riera, and J Eisert, (2013), arXiv: 1309.0816v2
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Implications

B < B (Ja) = D(g%(8), g55(8)) < € e~d(SOBE(B o)
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Implications

B<B(J,a) = D(g5(8),g85(8)) < C' e USOBNE(3Ie)

Local stability of thermal states

g°(B) only depends exponentially weakly on far away terms of the
Hamiltonian.
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Implications

B<B(J,a) = D(g5(8),g85(8)) < C' e USOBNE(3Ie)

Local stability of thermal states

g°(B) only depends exponentially weakly on far away terms of the
Hamiltonian.

Classical simulability with cost independent of total system size

Local expectation values can be calculates with cost independent of the
total system size.
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A universal bound on phase transitions

Universal critical temperature

The critical temperature
1 2
BT In((1++/1+4/a)/2)

upper bounds the physical critical temperatures of all possible models.
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A universal bound on phase transitions

Universal critical temperature

The critical temperature
I 2
BT In((1++/1+4/a)/2)

upper bounds the physical critical temperatures of all possible models.

Example: 2D square lattice (o < 4 e)
® The bound:
1/(8* ) = 2/In((1 + /T + 1/¢)/2) ~ 24.58

m Ising model (ferromagnetic, isotropic) phase transition at:

1/(B.J) =2/ In(1 +V2) =~ 2.27
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Summary

m New insights into long standing problems at the foundation of
statistical mechanics
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Summary

New insights into long standing problems at the foundation of
statistical mechanics

Equilibration appears as a natural consequence of unitary dynamics
Thermalization is a more subtle problem. . .

Maximum entropy principle emerges

Decoherence under weak coupling can be understood quite naturally
Measure concentration helps justify the use of ensembles

High temperature thermal states are locally stable against
perturbations



And there is more. ..

m Shallow but broad overview:
J. Eisert, M. Friesdorf, and C. Gogolin, Nature Physics,
11.2 (2015), 124-130

m In-depth review:
C. Gogolin and J. Eisert, Reports on Progress in Physics,
79.5 (2016), 56001
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