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“There is no line of argument proceding from
the laws of microscopic mechanics to macroscopic
phenomena that is generally regarded by physicists
as convincing in all respects.”

— E. T. Jaynes [1] (1957)

“Statistical physics [...] has not yet developed
a set of generally accepted formal axioms [...]”

— Jos Uffink [2] (2006)
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Recent experiments and numerical simulations
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Relaxation and Prethermalization in

an Isolated Quantum System
M. Gring,1 M. Kuhnert,1 T. Langen,1 T. Kitagawa,2 B. Rauer,1 M. Schreitl,1 I. Mazets,1,3

D. Adu Smith,1 E. Demler,2 J. Schmiedmayer
1,4*

Understanding relaxation processes is an important unsolved problem in many areas of

physics. A key challenge is the scarcity of experimental tools for the characterization of complex

transient states. We used measurements of full quantum mechanical probability distributions of

matter-wave interference to study the relaxation dynamics of a coherently split one-dimensional

Bose gas and obtained comprehensive information about the dynamical states of the system.

After an initial rapid evolution, the full distributions reveal the approach toward a thermal-like

steady state characterized by an effective temperature that is independent from the initial

equilibrium temperature of the system before the splitting process. We conjecture that this state

can be described through a generalized Gibbs ensemble and associate it with prethermalization.

D
espite its fundamental importance, a gen-

eral understanding of how isolated quan-

tummany-body systems approach thermal

equilibrium is still elusive. Theoretical concepts

such as the quantum ergodic theory or the ei-

genstate thermalization hypothesis (1–3) infer re-

quirements for a system to be able to undergo

relaxation, but it is still unclear onwhat tim
e scale

this occurs. In situations in which conservation

laws inhibit efficient relaxation, many-body sys-

tems are expected to display a complex behavior.

An intriguing phenomenon that has been sug-

gested in this context is prethermalization (4), a

general concept that is predicted to be ap
plicable

to a large variety of physical systems (5–9). In

the present understanding, prethermalization is

characterized by the rapid establishment of a

quasi-stationary state that already exhibits some

equilibrium-like properties. Full relaxation to the

1ViennaCenter forQuantumScienceandTechnology,Atominstitut,

Technische Universität (TU) Wien, Stadionallee 2, 1020

Vienna, Austria.
2Harvard–Massachussets Institute of Tech-

nology Center for Ultracold Atoms (CUA), Department of

Physics, Harvard University, Cambridge, MA 02138, USA.

3Ioffe Physico-Technical Institute of the Russia
n Academy of

Science, 194021 St. Petersburg, Russia.
4Zentrum für Mikro-

und Nanostrukturen (ZMNS), TU Wien, Floragasse 7, 1040

Vienna, Austria.

*To whom correspondence should be addressed. E-mail:

schmiedmayer@atomchip.org

Fig. 1. (A) An initial-phase fluctuating 1D Bose gas is split into two uncoupled

gases with almost identical phase distributions f1(z) and f2(z) (black solid

lines) and allowed to evolve for a time te. (B)
At te = 0 ms, fluctuations in the

local phase difference ∆f(z) between the two gases are very small, and the

corresponding phase correlation length is very large. During the evolution,

these relative-phase fluctuations increase, and the correlation length de-

creases. The main question we address is whether or when this system will

reach the corresponding thermal equilibrium of uncorrelated phases as

characterized by the initial temperature T and
thermal coherence length lT. In

experiment, this situation can be prepared on purpose by splitting a thermal

gas and cooling it into two independent gases (32). (C) Typica
l experimental

matter-wave interference patterns obtained
by overlapping the two gases in

time-of-flight after different evolution times. Differences in the local relative

phase lead to a locally displaced interference
pattern. Integrated over a length

L, the contrast C(L) is a direct measure of the strength of the relative-phase

fluctuations. (D) Because of the stochastic na
ture of the phase distributions,

repeated experimental runs yield a characteristic distribution P(C2) of con-

trasts, which allows one to distinguish between the initial state, an in-

termediate prethermalized state, and the true thermal equilibrium of the

system.
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FIG. 1. Relaxation of the density pattern. (a) Concept of the exper-
iment: after having prepared the density wave |ψ(t = 0)〉 (i), the
lattice depth was rapidly reduced to enable tunneling (ii). Finally,
the properties of the evolved state were read out after all tunneling
was suppressed again (iii). (b) Even-odd resolved detection: parti-
cles on sites with odd index were brought to a higher Bloch band. A
subsequent band-mapping sequence was used to reveal the odd- and
even-site populations [13, 14]. (c) Integrated band-mapping profiles
versus relaxation time t for h/(4J) ' 0.9ms, U/J = 5.16(7) and
K/J ' 9× 10−3. (d) Odd-site density extracted from the raw data
shown in c. The shaded area marks the envelope for free Bosons
(light grey) and including inhomogeneities of the Hubbard parame-
ters in the experimental system (dark grey).

Finally we added to the long lattice another optical lattice with
wavelength λxs = 765 nm = λxl/2 (“short lattice”) with the
relative phase between the two adjusted to load every second
site of the short lattice [14, 21]. Completely removing the
long lattice gave an array of practically isolated 1D density
waves |ψN 〉 = | · · · , 1, 0, 1, 0, 1, · · · 〉 – thus realizing step (i)
– with a distribution of particle numbers N and thus lengths
L = 2N − 1 given by the external confinement. For our pa-
rameters, we expect chains with a maximal particle number of
Nmax ' 43 and a mean value of N̄ ' 31 (see Supplementary
Material for details on the loading procedure).

To initialize the many-body relaxation dynamics of step (ii),
we quenched the short-lattice depth to a small value within
200µs, allowing the atoms to tunnel along the x-direction.
After a time t, we rapidly ramped up the short lattice to its
original depth, thus suppressing all tunneling. Finally, we
read out the properties of the evolved state in terms of den-
sities, currents and coherences in step (iii). Note that in the
experiments we always measured the full ensemble average
X(t) = E{N}〈ψN (t)|X̂|ψN (t)〉 of an observable X̂ over the
array of chains (denoted by the averaging operator E{N}),
rather than the expectation value for a single chain with N
particles.

Relaxation of quasi-local densities. We first discuss mea-
surements of the density on sites with either even or odd index.
After the time evolution, we transferred the population on odd
sites to a higher Bloch band using the superlattice and detected
these excitations employing a band-mapping technique (see
Fig. 1b) [13, 14]. Fig. 1c shows the integrated band-mapping
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K/J = 7·10-3
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FIG. 2. Relaxation of the local density for different interaction
strengths. We plot the measured traces of the odd-site population
nodd(t) for four different interaction strengths U/J (circles). The
solid lines are ensemble-averaged results from t-DMRG simulations
without free parameters. The dashed lines represent simulations in-
cluding next-nearest neighbor hopping with a coupling matrix ele-
ment JNNN/J ' 0.12 (a), 0.08 (b), 0.05 (c) and 0.03 (d) calculated
from the single-particle band structure.

profiles as a function of relaxation time for h/(4J) ' 0.9 ms,
U/J = 5.16(7) and K/J ' 9 × 10−3. We plot the resulting
traces nodd(t) in Fig. 1d. We generally observe oscillations
in nodd with a period T ' h/(4J) which rapidly dampen out
within 3-4 periods to a steady value of ' 0.5. The same qual-
itative behavior is found in a wide range of interactions (see
Fig. 2).

We performed t-DMRG calculations, keeping up to 5000
states in the matrix-product state simulations (solid lines in
Fig. 2). The Bose-Hubbard parameters used in these sim-
ulations were obtained from the respective set of experi-
mental control parameters. Furthermore, we took into ac-
count the geometry of the experimental setup by perform-
ing the corresponding ensemble average E{N} over chains
with different particle numbers N (see Supplementary Ma-
terial). For the times accessible in the simulations, these av-
erages differ only slightly from the traces obtained for a sin-
gle chain with the maximal particle number Nmax = 43 of
the ensemble (see Supplementary Material). For interaction
strengths U/J . 6 (Fig. 2a-c), we find a good agreement
of the experimental data and the simulations. In this regime,
only small systematic deviations can be observed, which are
strongest for the smallest value of U/J which corresponds
to the smallest lattice depth. They can be attributed to the
breakdown of the tight-binding approximation for shallow lat-
tices which gives rise to a significant amount of longer-ranged
hopping. When including a next-nearest neighbor hopping
term −JNNN

∑
j(â
†
j âj+2 + h.c.) in the t-DMRG simulations

we obtain quantitative agreement with the experimental data
(dashed line in Fig. 2). For larger values of U/J and corre-
spondingly deeper lattices, the tight-binding approximation is
valid. For U/J & 10 (Fig. 2d), larger deviations are found.
Here, the dynamics become more and more affected by resid-
ual inter-chain tunneling and non-adiabatic heating as the ab-
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Equilibration

Theorem (Equilibration on average [9])

If H has non-degenerate energy gaps, then for every ρ(0) = |ψ0〉〈ψ0|
there exists a ωS such that:

D
(
ρS(t), ωS

)
≤ 1

2

√
d2
S

deff

=⇒ If deff � d2
S then ρS(t) equilibrates on average.

[7] M Cramer, C. M. Dawson, J Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
[8] P. Reimann, Physical Review Letters, 101.19 (2008), 190403
[9] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103
[10] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063
[11] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 43020
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Non-degenerate energy gaps

H has non–degenerate energy gaps iff:

Ek − El = Em − En

=⇒ k = l ∧m = n ∨ k = m ∧ l = n

E

6=

Intuition: Sufficient for H to be fully interactive

H 6= H1⊗1 + 1⊗H2
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Effective dimension

deff :=
1∑

k |〈Ek|ψ0〉|4

Intuition: Dimension of supporting energy subspace
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Maximum entropy principle

Theorem (Maximum entropy principle [12])

If Tr[Aρ(t)] equilibrates on average, it equilibrates towards its time
average

Tr[Aρ(t)] = Tr[Aρ(t)] = Tr[Aω],

and ω is the state that maximizes the von Neumann entropy, given all
conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

[12] C. Gogolin, M. P. Müller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401
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Time averaging

ρ(0) =

ρ(0) 7→ ω is a pinching ⇒ ω maximizes entropy
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Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?
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Speed of the fluctuations around equilibrium

vS(t) :=
1

2

∥∥∥∥
dρS(t)

dt

∥∥∥∥
1

dρS(t)

dt
= i TrB[ψ(t), H]

Theorem (states are slow most of the time [13])

For every ρ(0) = |ψ0〉〈ψ0|

vS(t) ≤ ‖HS ⊗1+HSB ‖∞

√
d3
S

deff(ω)
.

=⇒ If deff(ω)� d3
S then ρS(t) is slow most of the time.

[13] N. Linden, S. Popescu, A. J. Short, and A. Winter, New Journal of Physics, 12.5 (2010), 055021
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When can a subsystem be slow?

Given the interaction is weak

‖HSB ‖∞ � ‖HS ‖∞,

when is the subsystem slow ?

vS(t) =
1

2

∥∥∥∥
dρS(t)

dt

∥∥∥∥
1

HBHS

HSB

dρS(t)

dt
= i TrB[ρ(t), H]

= i TrB[ρ(t), H0 +HS ⊗1+ 1⊗HB +HSB]

= i TrB[ρ(t), HS ⊗1 +HSB]
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Two competing forces

dρS(t)

dt
= i [ρS(t), HS ] + i TrB[ρ(t), HSB]
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Decoherence through weak interaction

Theorem

max
{(k,l)}

∑

(k,l)

2 |ESk − ESl | |ρSkl| ≤ 2 ‖HSB ‖∞ +

∥∥∥∥
dρS(t)

dt

∥∥∥∥
1

Decoherence in the HS

eigenbasis

No Schrödinger’s cat states
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Typicality of expectation values

Theorem (most pure states look like microcanonical states [14])

Let K ⊆ H, d := dim(K) and ΠK the projector onto K.
For randomly chosen pure states |ψ〉 ∈ K and every ε > 0

Pr
{∣∣∣Tr(Aψ)− Tr(A

ΠK
dK

)
∣∣∣ ≥ ε

}
≤ 2 e

− C d ε2

‖A‖2∞ ,

with C = (36π3)−1.

=⇒ Can be thought of as a justification of the equal a priory probability
postulate

[14] S. Popescu, A. J. Short, and A. Winter, Nature Physics, 2.11 (2006), 754–758
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Thermalization is a complicated process

Thermalization implies:

1 Equilibration [7–11, 15]

2 Subsystem initial state independence [12, 16]

3 Weak bath state dependence [17]

4 Diagonal form of the subsystem equilibrium state [18]

5 . . .

6 Thermal state ωS = TrB[ω] ≈ gSHS
(β) ∝ e−β HS [17, 19]

[7] M Cramer, C. M. Dawson, J Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
[8] P. Reimann, Physical Review Letters, 101.19 (2008), 190403
[9] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103
[10] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063
[11] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 43020
[12] C. Gogolin, M. P. Müller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401
[15] J. Gemmer, M. Michel, and G. Mahler, vol. 784, Lecture Notes in Physics, Berlin, Heidelberg: Springer, 2009
[16] A. Hutter and S. Wehner, Physical Review A, 87.1 (2013), 12121
[17] A. Riera, C. Gogolin, and J. Eisert, Physical Review Letters, 108.8 (2012), 80402
[18] C. Gogolin, Physical Review E, 81.5 (2010), 51127
[19] M. P. Müller, E. Adlam, L. Masanes, and N. Wiebe, Communications in Mathematical Physics, 340.2 (2015), 499–561
. . .
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The setting

Local Hamiltonian

Local Hamiltonian (spins or fermions)

H

S

:=
∑

λ∈E

(S)

hλ

Thermal state

g

B

(β) :=
e−β H

B

Tr [e−β H

B

]

Introduce buffer region

TrSc [gB(β)] ≈ TrSc [g(β)] ?
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The setting

Local Hamiltonian

Local Hamiltonian truncated to S ⊂ V

HS :=
∑

λ∈E(S)

hλ

Thermal state

gB(β) :=
e−β HB

Tr [e−β HB ]

Introduce buffer region

TrSc [gB(β)] ≈ TrSc [g(β)] ?
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B
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This can be made rigorous:

Generalized covariance

covτρ(A,A′) := Tr[ρτAρ1−τA′]− Tr[ρA] Tr[ρA′]

exactly captures the response of local expectation values.

Theorem (Truncation formula [20])

For any observable A = AS ⊗ 1

Tr[AgB(β)]− Tr[Ag(β)] = β

∫ 1

0

∫ 1

0
covτg(s,β)(H∂B, A) dτ ds ,

where g(s, β) is thermal state of H(s) := H − (1− s) H∂B .

[20] M Kliesch, C Gogolin, M. J. Kastoryano, A Riera, and J Eisert, (2013), arXiv: 1309.0816v2

http://arxiv.org/abs/1309.0816v2
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Clustering of correlations

Theorem (Clustering of correlations at high temperature [20])

Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)

∣∣covτg(β)(A,A
′)
∣∣ ≤ C e− d(A,A′) / ξ(β J,α)

with α = α(E) the lattice animal constant.

=⇒ D
(
gS(β), gB

S(β)
)
≤ C ′ e−d(S,∂B)/ξ(β J,α)

[20] M Kliesch, C Gogolin, M. J. Kastoryano, A Riera, and J Eisert, (2013), arXiv: 1309.0816v2

http://arxiv.org/abs/1309.0816v2
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Implications

β < β∗(J, α) =⇒ D
(
gS(β), gB

S(β)
)
≤ C ′ e−d(S,∂B)/ξ(β J,α)

Local stability of thermal states

gS(β) only depends exponentially weakly on far away terms of the
Hamiltonian.

Classical simulability with cost independent of total system size

Local expectation values can be calculates with cost independent of the
total system size.
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A universal bound on phase transitions

Universal critical temperature

The critical temperature

1

β∗J
=

2

ln
(
(1 +

√
1 + 4/α)/2

)

upper bounds the physical critical temperatures of all possible models.

Example: 2D square lattice (α ≤ 4 e)

The bound:
1/(β∗ J) = 2/ ln((1 +

√
1 + 1/ e)/2) ≈ 24.58

Ising model (ferromagnetic, isotropic) phase transition at:
1/(βc J) = 2/ ln(1 +

√
2) ≈ 2.27
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Summary

New insights into long standing problems at the foundation of
statistical mechanics

Equilibration appears as a natural consequence of unitary dynamics

Thermalization is a more subtle problem. . .

Maximum entropy principle emerges

Decoherence under weak coupling can be understood quite naturally

Measure concentration helps justify the use of ensembles

High temperature thermal states are locally stable against
perturbations
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And there is more. . .

Shallow but broad overview:
J. Eisert, M. Friesdorf, and C. Gogolin, Nature Physics,
11.2 (2015), 124–130

In-depth review:
C. Gogolin and J. Eisert, Reports on Progress in Physics,
79.5 (2016), 56001
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and I. Bloch, Nature Physics, 8.4 (2012), 325–330, arXiv: 1101.2659.

[7] M Cramer, C. M. Dawson, J Eisert, and T. J. Osborne, Physical Review
Letters, 100.3 (2008), 30602, arXiv: cond-mat/0703314.

[8] P. Reimann, Physical Review Letters, 101.19 (2008), 190403, arXiv:
0810.3092.

[9] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6
(2009), 61103, arXiv: 0812.2385.

[10] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063,
arXiv: 1110.5759.

[11] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 43020,
arXiv: 1202.2768.

[12] C. Gogolin, M. P. Müller, and J. Eisert, Physical Review Letters, 106.4
(2011), 40401, arXiv: 1009.2493.

[13] N. Linden, S. Popescu, A. J. Short, and A. Winter, New Journal of Physics,
12.5 (2010), 055021, arXiv: 0907.1267.

[14] S. Popescu, A. J. Short, and A. Winter, Nature Physics, 2.11 (2006),
754–758.

[15] J. Gemmer, M. Michel, and G. Mahler, vol. 784, Lecture Notes in Physics,
Berlin, Heidelberg: Springer, 2009.

[16] A. Hutter and S. Wehner, Physical Review A, 87.1 (2013), 12121, arXiv:
1111.3080.

[17] A. Riera, C. Gogolin, and J. Eisert, Physical Review Letters, 108.8 (2012),
80402, arXiv: 1102.2389.

[18] C. Gogolin, Physical Review E, 81.5 (2010), 51127, arXiv: 0908.2921.

[19] M. P. Müller, E. Adlam, L. Masanes, and N. Wiebe, Communications in
Mathematical Physics, 340.2 (2015), 499–561, arXiv: 1312.7420.

[20] M Kliesch, C Gogolin, M. J. Kastoryano, A Riera, and J Eisert, (2013), arXiv:
1309.0816v2.

[21] J. Eisert, M. Friesdorf, and C. Gogolin, Nature Physics, 11.2 (2015),
124–130, arXiv: 1408.5148.

[22] C. Gogolin and J. Eisert, Reports on Progress in Physics, 79.5 (2016), 56001,
arXiv: 1503.07538.

http://arxiv.org/abs/1112.0013
http://arxiv.org/abs/1111.0776
http://arxiv.org/abs/1101.2659
http://arxiv.org/abs/cond-mat/0703314
http://arxiv.org/abs/0810.3092
http://arxiv.org/abs/0812.2385
http://arxiv.org/abs/1110.5759
http://arxiv.org/abs/1202.2768
http://arxiv.org/abs/1009.2493
http://arxiv.org/abs/0907.1267
http://arxiv.org/abs/1111.3080
http://arxiv.org/abs/1102.2389
http://arxiv.org/abs/0908.2921
http://arxiv.org/abs/1312.7420
http://arxiv.org/abs/1309.0816v2
http://arxiv.org/abs/1408.5148
http://arxiv.org/abs/1503.07538

