Measure concentration in Hilbert space

Quantum mechanical typicality and the foundations of Thermodynamics

Christian Gogolin

Universität Würzburg

2009-12-18

Classical Mechanics

What is the equal a priory probability postulate?

The fundamental postulate in Statistical Mechanics:

Equal a priory probability Postulate

We want to calculate the expectation value $\langle A \rangle$ but have only limited knowledge about the system.

Then:

$$\langle A \rangle = \langle A \rangle_{\mathrm{mc}} := \begin{array}{l} \text{average over all} \\ \text{compatible states} \\ \text{with equal weights} \end{array}$$

What is the Second Law?

Clausius

Heat generally can not spontaneously flow from a material at lower temperature to a material at higher temperature.

[1,en.wikipedia.org]

What is the Second Law?

Clausius

Heat generally can not spontaneously flow from a material at lower temperature to a material at higher temperature.

Kelvin, Planck

It is impossible to convert heat completely into work in a cyclic process.

[1,en.wikipedia.org]

What is the Second Law?

Clausius

Heat generally can not spontaneously flow from a material at lower temperature to a material at higher temperature.

Kelvin, Planck

It is impossible to convert heat completely into work in a cyclic process.

Boltzmann (H-Theorem)

The entropy in a closed system can not decrease. It stays constant only for reversible processes.

[1,en.wikipedia.org]

Table of contents

- 1 Quantum Mechanics on one slide
- 2 Measure concentration in Hilbert space
- 3 Subsystem equilibration
- 4 Summary

■ Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{H}$$
$$\langle \psi | \psi \rangle = 1$$
$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$
$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$
$$U_{t} = e^{-i \mathcal{H} t}$$

■ Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{H}$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \qquad \psi = |\psi\rangle\langle\psi|$$

■ Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{H}$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \qquad \psi = |\psi\rangle\langle\psi|$$
$$\operatorname{Tr}[\rho] = \sum_{i} \langle i|\rho|i\rangle = 1 \qquad \qquad \langle A\rangle_{\rho} = \operatorname{Tr}[A\rho]$$

■ Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{H}$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \psi = |\psi\rangle\langle\psi|$$

$$\operatorname{Tr}[\rho] = \sum_{i} \langle i|\rho|i\rangle = 1 \qquad \langle A\rangle_{\rho} = \operatorname{Tr}[A\rho]$$

$$\rho_{t} = U_{t} \rho_{0} U_{t}^{\dagger} \qquad U_{t} = e^{-i \mathscr{H} t}$$

■ Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{H}$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \qquad \psi = |\psi\rangle\langle\psi|$$

$$\operatorname{Tr}[\rho] = \sum_{i} \langle i|\rho|i\rangle = 1 \qquad \qquad \langle A\rangle_{\rho} = \operatorname{Tr}[A\rho]$$

$$\rho_{t} = U_{t} \,\rho_{0} \,U_{t}^{\dagger} \qquad \qquad U_{t} = \mathrm{e}^{-\mathrm{i} \,\mathscr{H}\,t}$$

mixtures:
$$\rho = p \psi_1 + (1-p) \psi_2$$

Measure concentration in Hilbert space

Choosing random states

Mathematical construction

Haar measure on SU(n) \longrightarrow "uniform" distribution $\mu(V)=\mu(U\,V) \qquad U\,|0\rangle=|\psi\rangle \qquad \mu\{|\psi\rangle\}=\mu\{U\,|\psi\rangle\}$

Choosing random states

Mathematical construction

Haar measure on SU(n) $\mu(V) = \mu(U V)$ $U |0\rangle = |\psi\rangle$ $\mu\{|\psi\rangle\} = \mu\{U |\psi\rangle\}$

"uniform" distribution

- Explicit construction
 - **1** expand in basis: $|\psi\rangle = \sum_{i} (a_i + i \ b_i) |i\rangle$ $\langle i|j\rangle = \delta_{ij}$
 - choose a_i and b_i from a normal distribution
 - 3 normalize $1 = \sum_i |a_i|^2 + |b_i|^2$ $\langle \psi | \psi \rangle = 1$

Quantum states as vectors in \mathbb{R}^{2d}

• States $|\psi\rangle$ can be thought of as vectors in \mathbb{R}^{2d} :

$$|\psi\rangle = \sum_{i} (a_i + i \ b_i) |i\rangle \in \mathcal{H} \quad \longleftrightarrow \quad \vec{x} \in \mathbb{R}^{2d}$$

$$x_{2i}(\psi) = a_i \qquad \qquad x_{2i+1}(\psi) = b_i$$

Quantum states as vectors in \mathbb{R}^{2d}

• States $|\psi\rangle$ can be thought of as vectors in \mathbb{R}^{2d} :

$$|\psi\rangle = \sum_{i} (a_i + i \ b_i) |i\rangle \in \mathcal{H} \quad \longleftrightarrow \quad \vec{x} \in \mathbb{R}^{2d}$$

$$x_{2i}(\psi) = a_i \qquad \qquad x_{2i+1}(\psi) = b_i$$

Norm, metric and the uniform measure are preserved:

$$\|\vec{x}\| = \||\psi\rangle\|_2 = \sqrt{\langle\psi|\psi\rangle}$$
$$\|\vec{x}_1 - \vec{x}_2\| = \||\psi_1\rangle - |\psi_2\rangle\|_2$$

Quantum states as vectors in \mathbb{R}^{2d}

• States $|\psi\rangle$ can be thought of as vectors in \mathbb{R}^{2d} :

$$|\psi\rangle = \sum_{i} (a_i + i \ b_i) |i\rangle \in \mathcal{H} \quad \longleftrightarrow \quad \vec{x} \in \mathbb{R}^{2d}$$

$$x_{2i}(\psi) = a_i \qquad \qquad x_{2i+1}(\psi) = b_i$$

Norm, metric and the uniform measure are preserved:

$$\|\vec{x}\| = \||\psi\rangle\|_2 = \sqrt{\langle\psi|\psi\rangle}$$
$$\|\vec{x}_1 - \vec{x}_2\| = \||\psi_1\rangle - |\psi_2\rangle\|_2$$

 \Longrightarrow Normalized states lie on the surface S^{2d-1} of a hypersphere in \mathbb{R}^{2d} .

Levy's lemma

Lemma 1 (Levy's lemma)

Let $f: S^{d-1} \to \mathbb{R}$ have a finite Lipschitz constant

$$\eta = \sup_{\vec{x}_1, \vec{x}_2} \frac{|f(\vec{x}_1) - f(\vec{x}_2)|}{\|\vec{x}_1 - \vec{x}_2\|},$$

with respect to the euclidean norm $\|\cdot\|$.

Then, for uniformly random points $\vec{x} \in S^{d-1}$,

$$\mu\{|f(\vec{x}) - \langle f \rangle| \ge \epsilon\} \le 2 e^{-\frac{C d \epsilon^2}{\eta^2}},$$

where $C = (9 \pi^3)^{-1}$.

Theorem 2

Let $\mathcal{H}_R \subseteq \mathcal{H}, \ d_R = \dim(\mathcal{H}_R)$ and Π_R the projector onto \mathcal{H}_R . For randomly chosen pure states $\psi = |\psi\rangle\langle\psi|$

$$\mu\left\{\left|\operatorname{Tr}[A\,\psi]-\operatorname{Tr}[A\frac{\Pi_R}{d_R}]\right|\geq\epsilon\right\}\leq 2\,\operatorname{e}^{-\frac{C\,d_R\,\epsilon^2}{\|A\|_\infty^2}},$$

for every $\epsilon > 0$, where $C = (36 \pi^3)^{-1}$.

Theorem 2

Let $\mathcal{H}_R \subseteq \mathcal{H}, \ d_R = \dim(\mathcal{H}_R)$ and Π_R the projector onto \mathcal{H}_R . For randomly chosen pure states $\psi = |\psi\rangle\langle\psi|$

$$\mu\left\{ \left| \operatorname{Tr}[A\,\psi] - \underbrace{\operatorname{Tr}[A\frac{\Pi_R}{d_R}]}_{=\langle A\rangle_{\mathrm{mc}}} \right| \geq \epsilon \right\} \leq 2 \ \mathrm{e}^{-\frac{C\,d_R\,\epsilon^2}{\|A\|_\infty^2}},$$

for every $\epsilon > 0$, where $C = (36 \pi^3)^{-1}$.

⇒ Theorem 2 justifies the equal a priory probability postulate!

Proof.

Define:

$$f_A(\psi) = \operatorname{Tr}[A\,\psi] \quad f: S^{2d-1} \to \mathbb{R}$$

Proof.

Define:

$$f_A(\psi) = \operatorname{Tr}[A\,\psi] \quad f: S^{2d-1} \to \mathbb{R}$$

Calculate the expectation value:

$$\langle f_A(\psi)\rangle_{\psi} = \langle \text{Tr}[A\,\psi]\rangle_{\psi} = \text{Tr}[A\,\langle\psi\rangle_{\psi}] = \text{Tr}[A\frac{\Pi_R}{d_R}]$$

Proof.

Define:

$$f_A(\psi) = \operatorname{Tr}[A\,\psi] \quad f: S^{2d-1} \to \mathbb{R}$$

Calculate the expectation value:

$$\langle f_A(\psi)\rangle_{\psi} = \langle \text{Tr}[A\,\psi]\rangle_{\psi} = \text{Tr}[A\,\langle\psi\rangle_{\psi}] = \text{Tr}[A\frac{\Pi_R}{d_R}]$$

Bound the Lipschitz constant:

$$|f_A(\psi_1) - f_A(\psi_2)| = |\operatorname{Tr}[A(\psi_1 - \psi_2)]|$$

$$\leq ||A||_{\infty} |||\psi_1\rangle + |\psi_2\rangle||_2 |||\psi_1\rangle - |\psi_2\rangle||_2$$

$$\leq 2 ||A||_{\infty} |||\psi_1\rangle - |\psi_2\rangle||_2$$

Subsystem equilibration

Setup

System,
$$\mathcal{H}_S$$
, \mathscr{H}_S

Bath,
$$\mathcal{H}_B, \mathcal{H}_B$$

$$\rho_t^S = \mathrm{Tr}_B[\psi_t]$$

$$\rho_t^B = \text{Tr}_S[\psi_t]$$

Setup

System,
$$\mathcal{H}_S$$
, \mathscr{H}_S

Bath,
$$\mathcal{H}_B, \mathscr{H}_B$$

$$\rho_t^S = \text{Tr}_B[\psi_t]$$

$$\rho_t^B = \text{Tr}_S[\psi_t]$$

$$Tr[(A_S \otimes \mathbb{1}_B)\psi_t] = Tr[A_S \rho_t^S]$$

reduced state → locally observable

A very weak assumption on the Hamiltonian

Definition

A Hamiltonian has non-degenerate energy gaps iff:

$$E_k - E_l = E_m - E_n$$

$$\implies k = l \land m = n \text{ or } k = m \land l = n$$

Two definitions

■ Trace distance

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1$$

Two definitions

■ Trace distance

$$\begin{split} \mathcal{D}(\rho,\sigma) &= \frac{1}{2} \|\rho - \sigma\|_1 \\ &= \max_{0 \leq A \leq 1} \mathrm{Tr}[A\,\rho] - \mathrm{Tr}[A\,\sigma] \end{split}$$

Two definitions

Trace distance

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1$$
$$= \max_{0 \le A \le 1} \text{Tr}[A \rho] - \text{Tr}[A \sigma]$$

■ Time average

$$\overline{\rho_t} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \rho_t \, dt$$
$$\overline{f(\rho_t)} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\rho_t) \, dt$$

Equilibration

Theorem 3

Let \mathcal{H} have non-degenerate energy gaps.

Then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$

$$\overline{\mathcal{D}(\rho_t^S, \overline{\rho_t^S})} \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

$$d_S = \dim(\mathcal{H}_S)$$
 $d^{\mathrm{eff}} \sim \#$ energy eigenstates in $|\psi_0
angle$

Equilibration

Theorem 3

Let \mathcal{H} have non-degenerate energy gaps.

Then for every $\psi_0 = |\psi_0\rangle\langle\psi_0|$

$$\overline{\mathcal{D}(\rho_t^S, \overline{\rho_t^S})} \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}.$$

$$d_S=\dim(\mathcal{H}_S)$$
 $d^{\mathrm{eff}}\sim \#$ energy eigenstates in $|\psi_0
angle$ \Longrightarrow If $d^{\mathrm{eff}}\gg d_S^2$ then ho_t^S equilibrates.

Statistical equilibration

⇒ No conflict with time reversal invariance!

Typical effective dimension

Theorem 4

For random
$$\psi_0=|\psi_0\rangle\langle\psi_0|\in\mathcal{H}_R$$
 with $d_R=\dim(\mathcal{H}_R)$
$$\mu\left\{d^{\mathrm{eff}}<\frac{d_R}{4}\right\}\leq 2\,\mathrm{e}^{-c\sqrt{d_R}}$$

Typical effective dimension

Theorem 4

For random
$$\psi_0 = |\psi_0\rangle\langle\psi_0| \in \mathcal{H}_R$$
 with $d_R = \dim(\mathcal{H}_R)$
$$\mu\left\{d^{\mathrm{eff}} < \frac{d_R}{4}\right\} \leq 2\,\mathrm{e}^{-c\sqrt{d_R}}$$

 \Longrightarrow If d_R is large then d^{eff} is large.

Typical states of large quantum systems

 give expectation values close to that of the microcanonical ensemble,

Typical states of large quantum systems

- give expectation values close to that of the microcanonical ensemble,
- have a high average effective dimension,

Typical states of large quantum systems

- give expectation values close to that of the microcanonical ensemble,
- have a high average effective dimension,
- and their subsystems equilibrate.

References

- C. Gogolin, "Einselection without pointer states", 0908, 2921v2.
- [2] S. Lloyd, "Black holes, demons and the loss of coherence: How complex systems get information, and what they do with it",. PhD thesis, Rockefeller University, April, 1991.
- [3] S. Popescu, A. J. Short, and A. Winter, "Entanglement and the foundations of statistical mechanics", Nature Physics 2 (2006) no. 11, 754.
- [4] J. Uffink, "Compendium of the foundations of classical statistical physics", http://philsci-archive.pitt.edu/archive/00002691/.
- [5] V. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces.Springer Verlag, LNM 1200, Berlin, 2001.
- [6] N. Linden, S. Popescu, A. J. Short, and A. Winter, "Quantum mechanical evolution towards thermal equilibrium", 0812, 2385v1.

Thank you for your attention!

→ beamer slides: http://www.cgogolin.de