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The intriguing phenomenon of many-body localization (MBL) has attracted significant interest recently, but a complete characterization is still lacking. We introduce
the total correlations, a concept from quantum information theory capturing multi-partite correlations, to the study of this phenomenon. We demonstrate that the total
correlations of the diagonal ensemble provides a meaningful diagnostic tool to pin-down, probe, and better understand the MBL transition and ergodicity breaking in
quantum systems. In particular we show that the total correlations has sub-linear dependence on the system size in delocalized, ergodic phases, whereas we find that it
scales extensively in the localized phase developing a pronounced peak at the transition.

Reference: arXiv:1504.06872.

The total correlations

! Definition: Consider an N-partite system, then

T (ρ) :=
N∑

m=1

S(ρm)− S(ρ).

Where S(ρ) := −tr(ρ log2 ρ) is the von Neumann entropy.

Intuition: Measures distinguishability from product state:

T (ρ) = min
πproduct state

S(ρ‖π)

Where S(ρ‖σ) := −tr(ρ log2 σ)− S(ρ) ≥ ‖ρ− σ‖2
1/2 is the relative entropy.

Ergodicity

Starting point:
Ergodic Hypothesis: ergodic ⇔ systems explore phase space uniformly
⇒ infinite time average = microcanonical average
Essentially impossible in QM hence ask for less:

! Definition (in words):

A pair of Hamiltonian and initial state is ergodic (as oppose to MBL) if it
explores at least a constant fraction of the available Hilbert space.

Quantify: For a fixed initial state ρ and non-degenerate Hamiltonian H define
the dephased or time-averaged state (diagonal ensemble)

ω :=
∑
n

|En〉〈En| ρ |En〉〈En| = lim
τ→∞

1

τ

∫ τ

0

dt e−itH ρ eitH,

with |En〉 eigenvectors of H .
A family of systems of increasing size N is ergodic if ∃λ > 0 such that for most
product initial states from some subspace (i.e., fixed magnetization) of
dimension d it holds (with high probability over the disorder average)

S(ω) ≥ log2(λ d)

Scaling of T with N

Non-ergodic: As T (ω) involves the sum
∑N

m=1 S(ωm) of the N subsystem
entropies:

T (ω) ∝ N

Ergodic: If a family of disordered systems is ergodic however, then ∃λ > 0 such
that for most product initial states with high probability

T (ω) ≤
N∑

m=1

S(ωm)− log2(λ d).

For a spin-1/2 chain the magentization zero subspace has

d =
(

N
N/2

)
= N!/

(
N
2 !
)2 ≥

√
8 π e−2 2N/

√
N and S(ωm) ≤ log2 2 = 1, so that

T (ω) ≤ log2(N)/2− log2(λ
√

8 π e−2).

Intuition: Transport in ergodic systems makes parts so mixed that their
distinguishability from the closest product state only grows logarithmically.

Heisenberg spin-1/2 chain . . .

. . . of N sites with coupling constants J , Jzz and disorder strenght h:

H =
N∑
i=1

[
J (σixσ

i+1
x + σiyσ

i+1
y ) + Jzz σ

i
zσ

i+1
z + hi σ

i
z

]
Where we set J = Jzz = 1 and take hi ∈ [−h, h] uniformly distributed.
Then it has a MBL transition at h = hc ∈ [2, 4] [1].

Numerical results

1 Restrict to zero magnetization subspace
2 For product initial states compupte T (ω).
3 Average over all initial states and disorder → T (ω).
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Figure 1: Initial increase for small h is
power-law like with exponent 2.7(2). The
deviation maks beginning of the MBL transition
region.
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Figure 2: For high h, T decays as a
power-law with exponents of −0.9(1). Inset
shows position of peaks in Figure 1.
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Figure 3: For small h we see logarithmic
growth, as expected in an ergodic system, and
at large h linear growth.
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Figure 4: Difference between T and best
possible linear fit for different values of h.
Crossover from a nearly linear scaling to a
sub-linear scaling happens at h = 2.6(2)
(robust against omitting data points and holds
also for affine fits). The inset shows raw data.

Conclusions

Total correlations in the diagonal ensemble signal the MBL transition

They expose how this transition involves reorganization of correlations

Results suggests two step transition in line with [2, 3, 4]
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