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Motivation II: Coherent dynamics of large systems
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Relaxation and Prethermalization in

an Isolated Quantum System
M. Gring,1 M. Kuhnert,1 T. Langen,1 T. Kitagawa,2 B. Rauer,1 M. Schreitl,1 I. Mazets,1,3

D. Adu Smith,1 E. Demler,2 J. Schmiedmayer
1,4*

Understanding relaxation processes is an important unsolved problem in many areas of

physics. A key challenge is the scarcity of experimental tools for the characterization of complex

transient states. We used measurements of full quantum mechanical probability distributions of

matter-wave interference to study the relaxation dynamics of a coherently split one-dimensional

Bose gas and obtained comprehensive information about the dynamical states of the system.

After an initial rapid evolution, the full distributions reveal the approach toward a thermal-like

steady state characterized by an effective temperature that is independent from the initial

equilibrium temperature of the system before the splitting process. We conjecture that this state

can be described through a generalized Gibbs ensemble and associate it with prethermalization.

D
espite its fundamental importance, a gen-

eral understanding of how isolated quan-

tummany-body systems approach thermal

equilibrium is still elusive. Theoretical concepts

such as the quantum ergodic theory or the ei-

genstate thermalization hypothesis (1–3) infer re-

quirements for a system to be able to undergo

relaxation, but it is still unclear onwhat tim
e scale

this occurs. In situations in which conservation

laws inhibit efficient relaxation, many-body sys-

tems are expected to display a complex behavior.

An intriguing phenomenon that has been sug-

gested in this context is prethermalization (4), a

general concept that is predicted to be ap
plicable

to a large variety of physical systems (5–9). In

the present understanding, prethermalization is

characterized by the rapid establishment of a

quasi-stationary state that already exhibits some

equilibrium-like properties. Full relaxation to the

1ViennaCenter forQuantumScienceandTechnology,Atominstitut,

Technische Universität (TU) Wien, Stadionallee 2, 1020

Vienna, Austria.
2Harvard–Massachussets Institute of Tech-
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Fig. 1. (A) An initial-phase fluctuating 1D Bose gas is split into two uncoupled

gases with almost identical phase distributions f1(z) and f2(z) (black solid

lines) and allowed to evolve for a time te. (B)
At te = 0 ms, fluctuations in the

local phase difference ∆f(z) between the two gases are very small, and the

corresponding phase correlation length is very large. During the evolution,

these relative-phase fluctuations increase, and the correlation length de-

creases. The main question we address is whether or when this system will

reach the corresponding thermal equilibrium of uncorrelated phases as

characterized by the initial temperature T and
thermal coherence length lT. In

experiment, this situation can be prepared on purpose by splitting a thermal

gas and cooling it into two independent gases (32). (C) Typica
l experimental

matter-wave interference patterns obtained
by overlapping the two gases in

time-of-flight after different evolution times. Differences in the local relative

phase lead to a locally displaced interference
pattern. Integrated over a length

L, the contrast C(L) is a direct measure of the strength of the relative-phase

fluctuations. (D) Because of the stochastic na
ture of the phase distributions,

repeated experimental runs yield a characteristic distribution P(C2) of con-

trasts, which allows one to distinguish between the initial state, an in-

termediate prethermalized state, and the true thermal equilibrium of the

system.
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Motivation III: A new foundation for statistical mechanics
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Second Law, ergodicity
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“There is no line of argument proceding from
the laws of microscopic mechanics to macroscopic
phenomena that is generally regarded by physicists
as convincing in all respects.”

— E. T. Jaynes [2] (1957)

“Statistical physics [...] has not yet developed
a set of generally accepted formal axioms [...]”

— Jos Uffink [3] (2006)
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Motivation III: A new foundation for statistical mechanics

Thermodynamics

Statistical mechanics

⇑

Quantum mechanics

!!! Reviews !!! Reviews !!! Reviews !!! Reviews !!! Reviews !!!

Shallow but broad but overview:
J Eisert, M Friesdorf, and C Gogolin, Nature Physics, 11
(2014), 124–130

In depth review:
C. Gogolin and J. Eisert (2015), arXiv: 1503.07538v1

http://arxiv.org/abs/1503.07538v1
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Equilibration

Theorem (Equilibration on average [12])

If H has non-degenerate energy gaps, then for every ρ(0) = |ψ0〉〈ψ0|
there exists a ωS such that:

D
(
ρS(t), ωS

)
≤ 1

2

√
d2
S

deff

=⇒ If deff � d2
S then ρS(t) equilibrates on average.

[10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403
[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103
[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063
[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020
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Setting

dB � dSdS

ρS(t) = TrB[ρ(t)]
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Effective dimension
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k |〈Ek|ψ0〉|4

Intuition: Dimension of supporting energy subspace
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Thermalization is a complicated process

Thermalization implies:

1 Equilibration [10–15]

2 Subsystem initial state independence [16, 17]

3 Weak bath state dependence [18]

4 Diagonal form of the subsystem equilibrium state [19]

5 Thermal state ωS = TrB[ω] ≈ gSHS
(β) ∝ e−β HS [18, 20, 21]

[10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602
[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403
[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103
[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063
[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020
[16] C. Gogolin, M. P. Müller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401
[15] J. Gemmer, M. Michel, and G. Mahler, vol. 784, Lecture Notes in Physics, Berlin, Heidelberg: Springer, 2009
[17] A. Hutter and S. Wehner, Physical Review A, 87.1 (2013), 012121
[18] A. Riera, C. Gogolin, and J. Eisert, Physical Review Letters, 108.8 (2012), 080402
[19] C. Gogolin, Physical Review E, 81.5 (2010), 051127
[20] M. P. Mueller, E. Adlam, L. Masanes, and N. Wiebe (2013), arXiv: 1312.7420
[21] F. G. S. L. Brandão and M. Cramer (2015), arXiv: 1502.03263v1
. . .

http://arxiv.org/abs/1312.7420
http://arxiv.org/abs/1502.03263v1
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The setting

Local Hamiltonian (spins or fermions)

H

S

:=
∑
λ∈E

(S)

hλ

Thermal state

g

B

(β) :=
e−β H

B

Tr [e−β H

B

]

Introduce buffer region

TrSc [gB(β)] ≈ TrSc [g(β)] ?
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The setting

Local Hamiltonian truncated to S ⊂ V

HS :=
∑
λ∈E(S)

hλ

Thermal state

gB(β) :=
e−β HB

Tr [e−β HB ]

Introduce buffer region

TrSc [gB(β)] ≈ TrSc [g(β)] ?

S

B

d(S, ∂B)

??? ?

?
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This can be made rigorous:

Generalized covariance

covτρ(A,A
′) := Tr[ρτAρ1−τA′]− Tr[ρA] Tr[ρA′]

exactly captures the response of local expectation values.

Theorem (Truncation formula [22])

For any observable A = AS ⊗ 1

Tr[AgB(β)]− Tr[Ag(β)] = β

∫ 1

0

∫ 1

0
covτg(s,β)(H∂B, A) dτ ds ,

where g(s, β) is thermal state of H(s) := H − (1− s) H∂B .

[22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

http://arxiv.org/abs/1309.0816v2
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Clustering of correlations

Theorem (Clustering of correlations at high temperature [22])

Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)∣∣covτg(β)(A,A
′)
∣∣ ≤ C e− d(A,A′) / ξ(β J,α)

with α = α(E) the lattice animal constant.

=⇒ D
(
gS(β), gB

S(β)
)
≤ C ′ e−d(S,∂B)/ξ(β J,α)

[22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

http://arxiv.org/abs/1309.0816v2
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Implications

β < β∗(J, α) =⇒ D
(
gS(β), gB

S(β)
)
≤ C ′ e−d(S,∂B)/ξ(β J,α)

Local stability of thermal states

gS(β) only depends exponentially weakly on far away terms of the
Hamiltonian.

Classical simulability with cost independent of total system size

Local expectation values can be calculates with cost independent of the
total system size.
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A universal bound on phase transitions

Universal critical temperature

The critical temperature

1

β∗J
=

2

ln
(
(1 +

√
1 + 4/α)/2

)
upper bounds the physical critical temperatures of all possible models.

Example: 2D square lattice (α ≤ 4 e)

The bound:
1/(β∗ J) = 2/ ln((1 +

√
1 + 1/ e)/2) ≈ 24.58

Ising model (ferromagnetic, isotropic) phase transition at:
1/(βc J) = 2/ ln(1 +

√
2) ≈ 2.27
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Universal critical temperature

The critical temperature

1

β∗J
=

2

ln
(
(1 +

√
1 + 4/α)/2

)
upper bounds the physical critical temperatures of all possible models.

Example: 2D square lattice (α ≤ 4 e)

The bound:
1/(β∗ J) = 2/ ln((1 +

√
1 + 1/ e)/2) ≈ 24.58

Ising model (ferromagnetic, isotropic) phase transition at:
1/(βc J) = 2/ ln(1 +

√
2) ≈ 2.27
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Conclusions

Ongoing program reconsidering the foundations of statistical
mechanics

Well connected to exciting experiments

Rigorous results on equilibration, thermalization, locality of
temperature, . . .
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