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Here: Quantum many body dynamics
m On a quantum computer?

m On a classical computer?
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Unitary vs. Liouvillian dynamics

Unitary: Liouvillian:
equation of motion: Lp(t) = —i[H, p(t)] Lp(t) = L(p(t))
time independent: p(t) = e Hip(0)etH? p(t) = eFtp(0)
time dependent: “time ordered product integrals”
Propagator for t > s > 0 l " ]

p(t) = Tr(t, s)(p(s))
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Distinguishability of propagators

Distinguishability of density matrices:

_ = tr(A _
lp =0l = max tr(A(p— o))

Worst case estimate for propagators:

|7 =T'||,, = sup [T(p) = T"(p)l
llolli=1
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k-local Liouvillian dynamics

K d*
L= ZﬁA La(p) = —i[Hp, p] + Z ZLA,upLA,uT
A pn=1

Assumptions: £a

m N sites with finite local dimension d
m k-locality
m arbitrary time dependence

m ||Hall and ||La .||, bounded
independent of V

- {LA,,uTLA,,Ln p}
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Trotterization — what it is and how we get there

What we are aiming for:

m K
Te(7,0) = [ [ ] Tea (At 4, At(G — 1))
A

J=1

What we have to do:
Decompose T(7,0) in time slices.

Approximate each time slice by applying local
Liouvillians sequentially.
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A Trotter Formula for Liouvillian dynamics

Theorem 1 (Trotter decomposition [2])

Let £L = Zf L be a piecewise continuous time dependent, k-local
Liouvillian acting on N subsystems of dimension d, then

T, Tr (Atj,At(j—1 H <cK?71 At "2t
HLTO ]1_[11115 j (j ) _>1_c T e
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A Trotter Formula for Liouvillian dynamics

Theorem 1 (Trotter decomposition [2])

Let £L = Zf L be a piecewise continuous time dependent, k-local
Liouvillian acting on N subsystems of dimension d, then

T Tear (AL, AL (5 — 1 H < cK27 At P,
H[,TO ]1_[11115 J (j—1)) L, SeaTTAte

with b € O(d¥), ¢ € O(d?*).

Atj
Tpw (Atj, At (j — 1)) = exp(ALLY) LX) = At /A o Ladt
t(7—

[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Implication 1

Power of dissipative quantum computing [3, 2]

Dissipative quantum computing with k-local, arbitrary time dependent
Liouvillian dynamics is exactly as powerful as the circuit model.

[3] F. Verstraete, M. Wolf, and I. Cirac, Nature Physics, Vol 5, (2009) 633
[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Limits on efficient state preparation [2]

Even with arbitrary time-dependent k-local Liouvillian dynamics one can
only reach exponentially few states after polynomial time.

e-net {p; }: Smallest e-nets:
e e e e Q(exp(dN))

Number of circuits for
e-approximation:

O (exp(N3k+2T4))
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Implication 4

Strong quantum Church-Turing thesis [2]

Every quantum mechanical process that can be thought of as a
computation can be efficiently simulated in the unitary circuit model of
quantum computing.

Remember the assumption we made:
m N sites with finite local dimension d
m k-local Liouvillian dynamics

m arbitrary time dependence

Arguably the most broadest setting that allows efficient simulation.

[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Summary
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k-local Liouvillian dynamics can be trotterized

Dissipative quantum computing is no more powerful than the circuit
model

Most states can not be prepared efficiently

k-local Liouvillian dynamics can be simulated classically (efficient in
N, inefficient in 7)

A strong quantum Church-Turing theorem holds
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