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Simulability

What is (efficiently) simulatable?

Here: Quantum many body dynamics

On a quantum computer?

On a classical computer?

[1] A. M. Turing, Proc. London Math. Soc. 42 (1937) no. 230, 230–265
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Unitary vs. Liouvillian dynamics

Unitary:

Liouvillian:

equation of motion: d
dtρ(t) = −i[H, ρ(t)]

d
dtρ(t) = L(ρ(t))

time independent: ρ(t) = e−i H tρ(0)ei H t ρ(t) = eLtρ(0)

time dependent: “time ordered product integrals”

Propagator for t ≥ s ≥ 0

ρ(t) = TL(t, s)(ρ(s))
L1

TL(t, s)
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Distinguishability of propagators

Distinguishability of density matrices:

‖ρ− σ‖1 = max
0≤A≤1

tr(A(ρ− σ))

Worst case estimate for propagators:∥∥T − T ′∥∥
1→1

:= sup
‖ρ‖1=1

‖T (ρ)− T ′(ρ)‖1



Simulability of open quantum system dynamics | Trotterization of Liouvillian dynamics 7 / 20

Trotterization of Liouvillian dynamics



Simulability of open quantum system dynamics | Trotterization of Liouvillian dynamics 8 / 20

k-local Liouvillian dynamics

L =

K∑
Λ

LΛ LΛ(ρ) = −i[HΛ, ρ] +

dk∑
µ=1

2LΛ,µρLΛ,µ
† − {LΛ,µ

†LΛ,µ, ρ}

Assumptions:

N sites with finite local dimension d

k-locality

arbitrary time dependence

‖HΛ‖∞ and ‖LΛ,µ‖∞ bounded
independent of N
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Trotterization – what it is and how we get there

What we are aiming for:

TL(τ, 0) ≈
m∏
j=1

K∏
Λ

TLΛ
(∆t j,∆t(j − 1))

What we have to do:

1 Decompose TL(τ, 0) in time slices.

2 Approximate each time slice by applying local
Liouvillians sequentially.
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Trotterization of k-local Liouvillian dynamics

TL(τ, 0)

∆t1
2

...

m

1

2

...

m

m = O
(
d2kK2 τ2

ε

)
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Trotterization of k-local Liouvillian dynamics

−→

∆t

1
2

...

m
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2

...

m
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A Trotter Formula for Liouvillian dynamics

Theorem 1 (Trotter decomposition [2])

Let L =
∑K

Λ LΛ be a piecewise continuous time dependent, k-local
Liouvillian acting on N subsystems of dimension d, then∥∥∥TL(τ, 0)−

m∏
j=1

∏
Λ

TL

av

Λ
(∆t j,∆t (j − 1))

∥∥∥
1→1
≤ cK2 τ ∆t eb∆t,

with b ∈ O(dk), c ∈ O(d2k).

TLav
Λ

(∆t j,∆t (j − 1)) = exp(∆tLav
Λ ) Lav

Λ = ∆t

∫ ∆t j

∆t (j−1)
LΛdt

[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Stinespring and Solovay-Kitaev

1

2

...

m

TL1(∆t, 0)

Stinespring dilation
=

U

Solovay-Kitaev
≈
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Implications
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Implication 1

Power of dissipative quantum computing [3, 2]

Dissipative quantum computing with k-local, arbitrary time dependent
Liouvillian dynamics is exactly as powerful as the circuit model.

≈

[3] F. Verstraete, M. Wolf, and I. Cirac, Nature Physics, Vol 5, (2009) 633
[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Implication 2

Limits on efficient state preparation [2]

Even with arbitrary time-dependent k-local Liouvillian dynamics one can
only reach exponentially few states after polynomial time.

ε-net {ρi}: Smallest ε-nets:

Ω
(
exp(dN )

)
Number of circuits for
ε-approximation:

O
(

exp(N3k+2τ4)
)

[4] D. Poulin, A. Qarry, R. Somma, and F. Verstraete, PRL 106 (2011) 170501
[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Implication 3

Simulation on classical computers [2]

For fixed τ dissipative dynamics can be simulated efficiently in N on
classical computers.

efficiently evaluable |ψ0 〉

A

local Observable

[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Implication 4

Strong quantum Church-Turing thesis [2]

Every quantum mechanical process that can be thought of as a
computation can be efficiently simulated in the unitary circuit model of
quantum computing.

Remember the assumption we made:

N sites with finite local dimension d

k-local Liouvillian dynamics

arbitrary time dependence

Arguably the most broadest setting that allows efficient simulation.

[2] M. Kliesch, et al., PRL 107 (2011) 120501
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Summary

TL(τ, 0) ≈
m∏
j=1

K∏
Λ

TLΛ
(∆t j,∆t (j − 1))

k-local Liouvillian dynamics can be trotterized

Dissipative quantum computing is no more powerful than the circuit
model

Most states can not be prepared efficiently

k-local Liouvillian dynamics can be simulated classically (efficient in
N , inefficient in τ)

A strong quantum Church-Turing theorem holds
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