# Simulability of open quantum system dynamics "A dissipative quantum Church-Turing theorem"

M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin

QCCC Workshop 2011

# Simulability

What is (efficiently) simulatable?



<sup>[1]</sup> A. M. Turing, Proc. London Math. Soc. 42 (1937) no. 230, 230-265

# Simulability

What is (efficiently) simulatable?



Here: Quantum many body dynamics

- On a quantum computer?
- On a classical computer?

<sup>[1]</sup> A. M. Turing, Proc. London Math. Soc. 42 (1937) no. 230, 230-265

#### Table of contents

- 1 Preliminaries
- 2 Trotterization of Liouvillian dynamics
- 3 Implications
  - Dissipative quantum computing
  - Efficient state preparation
  - Simulations on classical computers
  - Dissipative Church-Turing theorem

# **Preliminaries**

Unitary:

equation of motion: 
$$\frac{\mathrm{d}}{\mathrm{d}t} \rho(t) = -\mathrm{i}[\mathrm{H}, \rho(t)]$$

Unitary:

Liouvillian:

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\mathrm{i}[\mathrm{H},\rho(t)]$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = \mathcal{L}(\rho(t))$$

|                     | Unitary:                                                                  | Liouvillian:                                                   |
|---------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|
| equation of motion: | $\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\mathrm{i}[\mathrm{H},\rho(t)]$ | $\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = \mathcal{L}(\rho(t))$ |
| time independent:   | $\rho(t) = e^{-iHt}\rho(0)e^{iHt}$                                        | $\rho(t) = e^{\mathcal{L}t} \rho(0)$                           |

Liouvillian:

# Unitary vs. Liouvillian dynamics

|                     | o mear y .                                                                 | Liouvillian.                                                   |
|---------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|
| equation of motion: | $\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\mathrm{i}[\mathrm{H}, \rho(t)]$ | $\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = \mathcal{L}(\rho(t))$ |

Unitary:

time independent: 
$$\rho(t)=\,{\rm e}^{-{\rm i}\,{\rm H}\,t}\rho(0){\rm e}^{{\rm i}\,{\rm H}\,t}\qquad \quad \rho(t)=\,{\rm e}^{\mathcal{L}t}\rho(0)$$

time dependent: "time ordered product integrals"

Unitary: Liouvillian:

equation of motion:  $\frac{\mathrm{d}}{\mathrm{d}t} \rho(t) = -\mathrm{i}[\mathrm{H}, \rho(t)]$   $\frac{\mathrm{d}}{\mathrm{d}t} \rho(t) = \mathcal{L}(\rho(t))$ 

time independent:  $\rho(t) = \mathrm{e}^{-\mathrm{i}\,\mathrm{H}\,t}\rho(0)\mathrm{e}^{\mathrm{i}\,\mathrm{H}\,t} \qquad \qquad \rho(t) = \mathrm{e}^{\mathcal{L}t}\rho(0)$ 

time dependent: "time ordered product integrals"

Propagator for  $t \ge s \ge 0$ 

$$\rho(t) = T_{\mathcal{L}}(t, s)(\rho(s))$$

Unitary:

Liouvillian:

equation of motion:

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\mathrm{i}[\mathrm{H}, \rho(t)]$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = \mathcal{L}(\rho(t))$$

time independent:

$$\rho(t) = e^{-iHt} \rho(0) e^{iHt}$$

$$\rho(t) = e^{\mathcal{L}t} \rho(0)$$

time dependent:

"time ordered product integrals"

Propagator for  $t \ge s \ge 0$ 

$$\rho(t) = T_{\mathcal{L}}(t, s)(\rho(s))$$



Unitary:

Liouvillian:

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\mathrm{i}[\mathrm{H}, \rho(t)]$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = \mathcal{L}(\rho(t))$$

$$\rho(t) = e^{-iHt}\rho(0)e^{iHt}$$

$$\rho(t) = e^{\mathcal{L}t} \rho(0)$$

time dependent:

"time ordered product integrals"

Propagator for 
$$t \ge s \ge 0$$

$$\rho(t) = T_{\mathcal{L}}(t, s)(\rho(s))$$



# Distinguishability of propagators

Distinguishability of density matrices:

$$\|\rho - \sigma\|_1 = \max_{0 \le A \le 1} \operatorname{tr}(A(\rho - \sigma))$$

Worst case estimate for propagators:

$$||T - T'||_{1 \to 1} := \sup_{\|\rho\|_1 = 1} ||T(\rho) - T'(\rho)||_1$$

$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

#### Assumptions:

 $\blacksquare N$  sites with finite local dimension d



$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

- $lue{N}$  sites with finite local dimension d
- k-locality



$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

- N sites with finite local dimension d
- *k*-locality



$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

- N sites with finite local dimension d
- k-locality



$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

- N sites with finite local dimension d
- *k*-locality



$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

- lue N sites with finite local dimension d
- *k*-locality
- arbitrary time dependence



$$\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda} \quad \mathcal{L}_{\Lambda}(\rho) = -\mathrm{i}[H_{\Lambda}, \rho] + \sum_{\mu=1}^{d^{k}} 2L_{\Lambda, \mu} \rho L_{\Lambda, \mu}^{\dagger} - \{L_{\Lambda, \mu}^{\dagger} L_{\Lambda, \mu}, \rho\}$$

- lue N sites with finite local dimension d
- *k*-locality
- arbitrary time dependence
- $\blacksquare \ \left\| {{{\bf{H}}_\Lambda }} \right\|_\infty$  and  $\left\| {{L_{\Lambda ,\mu }}} \right\|_\infty$  bounded independent of N



### Trotterization – what it is and how we get there

#### What we are aiming for:

$$T_{\mathcal{L}}(\tau,0) \approx \prod_{j=1}^{m} \prod_{\Lambda}^{K} T_{\mathcal{L}_{\Lambda}}(\Delta t \, j, \Delta t (j-1))$$

#### What we have to do:

- 1 Decompose  $T_{\mathcal{L}}(\tau,0)$  in time slices.
- 2 Approximate each time slice by applying local Liouvillians sequentially.

















 $\approx$ 





 $\approx$ 









$$m = \mathcal{O}\left(\frac{d^{2k} K^2 \tau^2}{\epsilon}\right)$$

### A Trotter Formula for Liouvillian dynamics

### Theorem 1 (Trotter decomposition [2])

Let  $\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda}$  be a piecewise continuous time dependent, k-local Liouvillian acting on N subsystems of dimension d, then

$$\left\| T_{\mathcal{L}}(\tau,0) - \prod_{j=1}^{M} \prod_{\Lambda} T_{\mathcal{L}_{\Lambda}} \left( \Delta t \, j, \Delta t \, (j-1) \right) \right\|_{1 \to 1} \le c \, K^2 \, \tau \, \Delta t \, e^{b \, \Delta t},$$

with  $b \in O(d^k)$ ,  $c \in O(d^{2k})$ .

### A Trotter Formula for Liouvillian dynamics

### Theorem 1 (Trotter decomposition [2])

Let  $\mathcal{L} = \sum_{\Lambda}^{K} \mathcal{L}_{\Lambda}$  be a piecewise continuous time dependent, k-local Liouvillian acting on N subsystems of dimension d, then

$$\left\| T_{\mathcal{L}}(\tau,0) - \prod_{j=1}^{m} \prod_{\Lambda} T_{\mathcal{L}_{\Lambda}^{\text{av}}}(\Delta t \, j, \Delta t \, (j-1)) \right\|_{1 \to 1} \le c \, K^2 \, \tau \, \Delta t \, e^{b \, \Delta t},$$

with  $b \in O(d^k)$ ,  $c \in O(d^{2k})$ .

$$T_{\mathcal{L}_{\Lambda}^{\mathrm{av}}}(\Delta t \, j, \Delta t \, (j-1)) = \exp(\Delta t \, \mathcal{L}_{\Lambda}^{\mathrm{av}}) \qquad \mathcal{L}_{\Lambda}^{\mathrm{av}} = \Delta t \int_{\Delta t \, (j-1)}^{\Delta t \, j} \mathcal{L}_{\Lambda} \mathrm{d}t$$

[2] M. Kliesch, et al., PRL 107 (2011) 120501









Power of dissipative quantum computing [3, 2]

Dissipative quantum computing with k-local, arbitrary time dependent Liouvillian dynamics is exactly as powerful as the circuit model.



<sup>[3]</sup> F. Verstraete, M. Wolf, and I. Cirac, Nature Physics, Vol 5, (2009) 633

<sup>[2]</sup> M. Kliesch, et al., PRL 107 (2011) 120501

Limits on efficient state preparation [2]

Even with arbitrary time-dependent k-local Liouvillian dynamics one can only reach exponentially few states after polynomial time.

<sup>[4]</sup> D. Poulin, A. Qarry, R. Somma, and F. Verstraete, PRL 106 (2011) 170501

<sup>[2]</sup> M. Kliesch, et al., PRL 107 (2011) 120501

15 / 20

# Implication 2

# Limits on efficient state preparation [2]

Even with arbitrary time-dependent k-local Liouvillian dynamics one can only reach exponentially few states after polynomial time.



D. Poulin, A. Qarry, R. Somma, and F. Verstraete, PRL 106 (2011) 170501

<sup>[2]</sup> M. Kliesch, et al., PRL 107 (2011) 120501

# Limits on efficient state preparation [2]

Even with arbitrary time-dependent k-local Liouvillian dynamics one can only reach exponentially few states after polynomial time.



Smallest  $\epsilon$ -nets:

 $\Omega\left(\exp(d^N)\right)$ 

<sup>[4]</sup> D. Poulin, A. Qarry, R. Somma, and F. Verstraete, PRL 106 (2011) 170501

<sup>[2]</sup> M. Kliesch, et al., PRL 107 (2011) 120501

## Limits on efficient state preparation [2]

Even with arbitrary time-dependent k-local Liouvillian dynamics one can only reach exponentially few states after polynomial time.



Smallest  $\epsilon$ -nets:

$$\Omega\left(\exp(d^N)\right)$$

Number of circuits for  $\epsilon$ -approximation:

$$O\left(\exp(N^{3k+2}\tau^4)\right)$$

<sup>[4]</sup> D. Poulin, A. Qarry, R. Somma, and F. Verstraete, PRL 106 (2011) 170501

<sup>[2]</sup> M. Kliesch, et al., PRL 107 (2011) 120501

16 / 20

# Implication 3

Simulation on classical computers [2]

For fixed  $\tau$  dissipative dynamics can be simulated efficiently in N on classical computers.

#### Simulation on classical computers [2]

For fixed  $\tau$  dissipative dynamics can be simulated efficiently in N on classical computers.



[2] M. Kliesch, et al., PRL 107 (2011) 120501

#### Simulation on classical computers [2]

For fixed  $\tau$  dissipative dynamics can be simulated efficiently in N on classical computers.



[2] M. Kliesch, et al., PRL 107 (2011) 120501

# Strong quantum Church-Turing thesis [2]

Every quantum mechanical process that can be thought of as a computation can be efficiently simulated in the unitary circuit model of quantum computing.

## Strong quantum Church-Turing thesis [2]

Every quantum mechanical process that can be thought of as a computation can be efficiently simulated in the unitary circuit model of quantum computing.

#### Remember the assumption we made:

N sites with finite local dimension d

# Strong quantum Church-Turing thesis [2]

Every quantum mechanical process that can be thought of as a computation can be efficiently simulated in the unitary circuit model of quantum computing.

#### Remember the assumption we made:

- N sites with finite local dimension d
- k-local Liouvillian dynamics

## Strong quantum Church-Turing thesis [2]

Every quantum mechanical process that can be thought of as a computation can be efficiently simulated in the unitary circuit model of quantum computing.

#### Remember the assumption we made:

- N sites with finite local dimension d
- k-local Liouvillian dynamics
- arbitrary time dependence

## Strong quantum Church-Turing thesis [2]

Every quantum mechanical process that can be thought of as a computation can be efficiently simulated in the unitary circuit model of quantum computing.

#### Remember the assumption we made:

- N sites with finite local dimension d
- k-local Liouvillian dynamics
- arbitrary time dependence

Arguably the most broadest setting that allows efficient simulation.

[2] M. Kliesch, et al., PRL 107 (2011) 120501

$$T_{\mathcal{L}}(\tau,0) \approx \prod_{j=1}^{m} \prod_{\Lambda}^{K} T_{\mathcal{L}_{\Lambda}}(\Delta t \, j, \Delta t \, (j-1))$$

• k-local Liouvillian dynamics can be trotterized

$$T_{\mathcal{L}}(\tau,0) pprox \prod_{j=1}^{m} \prod_{\Lambda} T_{\mathcal{L}_{\Lambda}}(\Delta t \, j, \Delta t \, (j-1))$$

- k-local Liouvillian dynamics can be trotterized
- Dissipative quantum computing is no more powerful than the circuit model

$$T_{\mathcal{L}}(\tau,0) \approx \prod_{j=1}^{m} \prod_{\Lambda}^{K} T_{\mathcal{L}_{\Lambda}}(\Delta t \, j, \Delta t \, (j-1))$$

- k-local Liouvillian dynamics can be trotterized
- Dissipative quantum computing is no more powerful than the circuit model
- Most states can not be prepared efficiently

$$T_{\mathcal{L}}(\tau,0) \approx \prod_{j=1}^{m} \prod_{\Lambda}^{K} T_{\mathcal{L}_{\Lambda}}(\Delta t \, j, \Delta t \, (j-1))$$

- k-local Liouvillian dynamics can be trotterized
- Dissipative quantum computing is no more powerful than the circuit model
- Most states can not be prepared efficiently
- k-local Liouvillian dynamics can be simulated classically (efficient in N, inefficient in  $\tau$ )

$$T_{\mathcal{L}}(\tau,0) \approx \prod_{j=1}^{m} \prod_{\Lambda}^{K} T_{\mathcal{L}_{\Lambda}}(\Delta t \, j, \Delta t \, (j-1))$$

- k-local Liouvillian dynamics can be trotterized
- Dissipative quantum computing is no more powerful than the circuit model
- Most states can not be prepared efficiently
- k-local Liouvillian dynamics can be simulated classically (efficient in N, inefficient in  $\tau$ )
- A strong quantum Church-Turing theorem holds

# Collaborators









Martin Kliesch

Thomas Barthel

Jens Eisert





Michael Kastoryano

#### References

# Thank you for your attention!

→ slides: www.cgogolin.de

- A. M. Turing.
  "On computable numbers, with an application to the entscheidungsproblem", *Proc. London Math. Soc.* 42 (1937) no. 230, 230–265.
- [2] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, "Dissipative Quantum Church-Turing Theorem", Physical Review Letters 107 (2011) no. 12.
- [3] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, "Quantum computation and quantum-state engineering driven by dissipation", Nature Physics 5 (2009) no. 9, 633.
- [4] D. Poulin, A. Qarry, R. Somma, and F. Verstraete, "Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space", Physical Review Letters 106 (2011) no. 17, 170501.