Stability and efficient classical simulation of high temperature quantum states

M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

Investigating stability and simulatability of quantum states on lattice systems is a central topic in Hamiltonian complexity theory. We prove that above a universal critical temperature, only depending on local properties of the Hamiltonian, nearest-neighbor interactions are stable against distant Hamiltonian perturbations. As a consequence, local expectation values can be approximated in polynomial time. The stability theorem also provides a definition of temperature as a local quantity. The proof is based on novel exponential clustering of correlations result. We prove our clustering result via a reduction to a cluster expansion originally used to approximate thermal states by matrix-product operators.

Motivation
- Stability of thermal states against perturbations
- Does a Lieb-Robinson type quasi-locality hold in imaginary time?
- Physically speaking: On what length scale is temperature well-defined [1, 2, 3]?
- Stability ↔ correlations
- Behaviour of correlations
- Computational complexity ↔ thermal states

Main results

Theorem (Truncation formula)
Let \(J \leq E \) be a subset of edges, denote the corresponding interaction Hamiltonian by \(H_e \), and the interpolating Hamiltonian by \(H(s) = H(1-s) + s H_e \), with thermal state \(\rho = \text{e}^{-s H} \). Then, for any operator \(A \),
\[
\text{Tr}(A H_e(s)) - \text{Tr}(A \rho) = \beta \int_0^1 \text{d}s \text{cov}_s(\rho, A H_e(s)) \text{d}s.
\]

Theorem (Clustering of correlations at high temperatures)
Let the interaction (hyper)graph \((V, E) \) have a growth constant \(\alpha \) and define the quantities
\[
\beta^* := \min \left(\frac{1}{1 + \sqrt{\gamma + 4/\gamma}}, \frac{2}{2 J} \right) \quad (\text{critical inverse temperature}),
\]
\[
\xi(J) := \left(\frac{1}{\ln(\alpha^{-1/2} \gamma^{1/2} - 1)} \right)^{-1} \quad (\text{correlation length}).
\]
Then, for every \(J < \beta^* \), parameter \(r \in [0, 1] \), and every two operators \(A \) and \(B \) with \(\text{d}(A, B) \geq L_1(\mathcal{A}, \mathcal{B}) \),
\[
\text{cov}_r(A, B) \leq \frac{4 L_1(\mathcal{A}, \mathcal{B})}{\ln(\beta^*/(\beta^* - r))} e^{-\xi(J) \text{d}(A,B)}.
\]

Implications
- Correlations measured by the averaged covariance are a measure of local stability against distant Hamiltonian perturbations.
- Temperature is intensive on a given length scale if and only if correlations are negligible (compared to \(1/\xi \)) on that length scale.

Combined with the exponential clustering result:

Implication (Universal stability)
At high temperatures \((J < \beta^*) \) thermal states are locally exponentially stable against distant Hamiltonian perturbations.

Corollary (Efficient classical local simulation)
Let \(|J| < \beta^* \), and let \(S \subset B \subset V \) be subsystems (see Figure 2) with \(d(S, \partial B) \geq L_1(\mathcal{S}, \partial B) \).
\[
\frac{\lambda(J)}{\lambda(\beta^*)} \leq \frac{1}{4} \left(1 - e^{-\xi(J) \text{d}(S,\partial B)} \right).
\]

Ingredients for the clustering of correlations proof

Multiple swap-trick (4 topics)
With \(A^{-1} \triangleq A(1-1/A) \)
\[
\text{cov}_r(A, B) = \frac{1}{2} \sum_{w \in \mathcal{S}} \text{e}^{-\xi(J) \text{d}(S,\partial B)} \sum_{x \in \mathcal{W}} \text{e}^{-\xi(J) \text{d}(S,\partial B)}
\]

Effective Hamiltonian
\[
\tilde{H} = r H(1-r) + (1-r) H(1-r) \quad (\text{cluster expansion})
\]

Remark: Matrix product operators (MPOs)
- Local Hamiltonian is stable against distant Hamiltonian perturbations.
- For \(E \leq \frac{2}{3} \), Tensor size sub-exponentially large in the system size

Example (Critical temperature)

2D Ising Model (ferromagnetic, isotropic, without external field):
- Our bound: \(1/(\beta^* J) = 2/(\ln(1 + 1/(1 + 1/e) \approx 24.58 \) and
- Phase transition at: \(1/(\beta^* J) = 2/(\ln(1 + \sqrt{2}) \approx 2.27 \) ... but remember, \(\beta^* \) provides a universal bound for all models.

References