Generalized Probabilistic Theories

Peter Janotta Christian Gogolin

Julius-Maximilians-Universität Würzburg National University of Singapore

2009-01-28

Table of contents

- 1 Motivation and background
- 2 Assumptions and fundamental concept
- 3 Mathematical representation
- 4 Examples

Motivation and background

Quantum Mechanics works, but it is not well understood!

Niels Bohr (1885-1962)

"Jeder, der von sich behauptet, er habe die Quantenmechanik verstanden, hat überhaupt nichts verstanden."

Better understanding by generalization

Better understanding by generalization

Taking a new viewpoint gives new insights

Taking a new viewpoint gives new insights

- Why Quantum Mechanics?
- What are the alternatives?

- Why Quantum Mechanics?
- What are the alternatives?
- Which properties of QM are genuine quantum?
 - Cloning is impossible in (almost) all non-classical GPTs
 - Broadcasting is impossible in (almost) all non-classical GPTs
 - Teleportation is possible in GPTs other that QM

Taking a new viewpoint gives new insights

- Why Quantum Mechanics?
- What are the alternatives?
- Which properties of QM are genuine quantum?
 - Cloning is impossible in (almost) all non-classical GPTs
 - Broadcasting is impossible in (almost) all non-classical GPTs
 - Teleportation is possible in GPTs other that QM
- How to generalize concepts like entanglement or entropy?

Assumptions and fundamental concept

I. Isolated systems

Assumption

An operational approach

Assumption

An operational approach

Assumption

Assumption

State

Definition

The state ω of a physical system is completely specified by giving the probabilities for the outcomes of all measurements that can be performed on it.

In turn, specifying the state ω , specifies all these probabilities.

"state space"

$$\Omega = \{\omega\}$$

Effects

Definition

Every measurement outcome is associated with an effect e.

We write the probability to get this outcome when the system is in some state ω as $e(\omega) \in [0,1]$.

Effects

Definition

Every measurement outcome is associated with an effect e.

We write the probability to get this outcome when the system is in some state ω as $e(\omega) \in [0,1]$.

Effects

Definition

Every measurement outcome is associated with an effect e.

We write the probability to get this outcome when the system is in some state ω as $e(\omega) \in [0,1]$.

A certain measurement outcome

Unit measure

For every physical system there is a special effect, the so called unit measure u, defined by

$$u(\omega) = 1 \ \forall \ \omega \in \Omega$$

Unit measure

For every physical system there is a special effect, the so called ${\sf unit}$ measure u, defined by

$$u(\omega) = 1 \ \forall \ \omega \in \Omega$$

"Is the system in one of its states?"

Mixed states

Assumption

Mixing two states ω_1 and ω_2 results in state that is a convex combination

$$\omega = p(\omega_1) + (1-p)(\omega_1),$$

a so called mixed states.

Assumption

Mixing two states ω_1 and ω_2 results in state that is a convex combination

$$\omega = p(\omega_1) + (1-p)(\omega_1),$$

a so called mixed states.

Definition

State that can **not** be written as a convex combination of states are called pure or extremal.

- 1 States must be represented by elements of a linear space A.
- In the state space $\Omega^A \in A$ is convex and the extreme points of this set are the pure states.

- 11 States must be represented by elements of a linear space A.
- The state space $\Omega^A \in A$ is convex and the extreme points of this set are the pure states.
- **3** Effects are linear functionals on the state space $e: \Omega \to [0,1]$.

$$e(\omega) = p e(\omega_1) + (1 - p) e(\omega_2)$$

 $egin{pmatrix} \omega & \in & \left(\Omega^A\right) & \subset & A \end{pmatrix}$

- 1 States must be represented by elements of a linear space A.
- 2 The state space $\Omega^A \in A$ is convex and the extreme points of this set are the pure states.
- **3** Effects are linear functionals on the state space $e: \Omega \to [0,1]$.
- **4** The effects form a convex set E^A in the dual space A^* .

- 1 States must be represented by elements of a linear space A.
- 2 The state space $\Omega^A \in A$ is convex and the extreme points of this set are the pure states.
- **3** Effects are linear functionals on the state space $e: \Omega \to [0,1]$.
- 4 The effects form a convex set E^A in the dual space A^* .

- 1 States must be represented by elements of a linear space A.
- 2 The state space $\Omega^A \in A$ is convex and the extreme points of this set are the pure states.
- **3** Effects are linear functionals on the state space $e: \Omega \to [0,1]$.
- **4** The effects form a convex set E^A in the dual space A^* .

Assumptions and fundamental concept

II. Joint systems

Assumption

Local operations on disjoint subsystems commute.

 ω^{AB}

Assumption

Assumption

Assumption

Assumption

Assumption

Assumption

Local operations on disjoint subsystems commute.

Fiducial measurements

Fiducial measurements

Giving the probabilities for all outcomes of a fiducial measurement is sufficient to uniquely specify a state.

Fiducial measurements

Giving the probabilities for all outcomes of a fiducial measurement is sufficient to uniquely specify a state.

Assumption

Fiducial measurements on system A and B are sufficient to specify the state of the joint system AB.

Global state assumption

Assumption

Fiducial measurements on system A and B are sufficient to specify the state of the joint system AB.

Global State Assumption No-Signalling Principle

Global state assumption

Global state assumption

Summary and consequences

- Isolated systems:
- Operational approach
- Mixed states

$$\in$$
 Ω^A

$$\int E^A$$

$$A^*$$

Summary and consequences

- Isolated systems:
 - Operational approach
- Mixed states

$$\omega$$
 \in Ω^A

$$\left(E^A\right)$$

$$A^*$$

- Joint systems:
 - No-signalling
 - Global state

 \in

$$\left(\Omega^{AB}
ight)$$

Mathematical representation

I. Isolated systems

Linear space A

 $lue{}$ States ω are elements of a linear space A

${\it Linear space} \ A$

- $lue{}$ States ω are elements of a linear space A
- lacksquare Effects e are elements of its dual space A^*

Linear space A

- $lue{}$ States ω are elements of a linear space A
- lacksquare Effects e are elements of its dual space A^*

Special properties for A of finite dimension:

 \blacksquare A and A^* are self dual

Linear space A

- $lue{}$ States ω are elements of a linear space A
- $lue{}$ Effects e are elements of its dual space A^*

Special properties for A of finite dimension:

- \blacksquare A and A^* are self dual
- $lackbox{lack} e(\omega)$ can be regarded as a scalar product

lacksquare The state space Ω is a convex set.

- The state space Ω is a convex set.
- This means that all convex combinations.

$$\omega = \sum_{i} p_i \, \omega_i \qquad \sum_{i} p_i = 1, \ p_i \ge 0$$

are part of the state space Ω .

- The state space Ω is a convex set.
- This means that all convex combinations.

$$\omega = \sum_{i} p_i \, \omega_i \qquad \sum_{i} p_i = 1, \ p_i \ge 0$$

are part of the state space Ω .

■ There is also a geometric interpretation of convexity...

- The state space Ω is a convex set.
- This means that all convex combinations.

$$\omega = \sum_{i} p_i \, \omega_i \qquad \sum_{i} p_i = 1, \ p_i \ge 0$$

are part of the state space Ω .

- There is also a geometric interpretation of convexity...
- All states ω on a strait line connecting $\omega_1, \omega_2 \in \Omega$ are part of Ω

lacksquare Ω can have an infinite number of extremal states

- lacksquare Ω can have an infinite number of extremal states
- Bond of the state space must not bend to the inside

- lacksquare Ω can have an infinite number of extremal states
- Bond of the state space must not bend to the inside

- lacksquare Ω can have an infinite number of extremal states
- Bond of the state space must not bend to the inside
- No holes allowed

- lacksquare Ω can have an infinite number of extremal states
- Bond of the state space must not bend to the inside
- No holes allowed
- Must be connected

- lacksquare Ω can have an infinite number of extremal states
- Bond of the state space must not bend to the inside
- No holes allowed
- Must be connected

Choosing the unit measure u

Next step to define a theory is to choose a unit measure:

$$u(\omega) = 1 \quad \forall \ \omega \in \Omega$$

Choosing the unit measure u

Next step to define a theory is to choose a unit measure:

$$u(\omega) = 1 \quad \forall \ \omega \in \Omega$$

Extra dimension for the unit measure

Choosing the unit measure u

Next step to define a theory is to choose a unit measure:

$$u(\omega) = 1 \quad \forall \ \omega \in \Omega$$

- Extra dimension for the unit measure
- $lue{}$ State space in a hyperplane normal to u

Positive cone A_+

 \blacksquare Positive linear combinations of states $\omega \in \Omega$ construct a positive cone $A_+ \subset A$

Positive cone A_+

- \blacksquare Positive linear combinations of states $\omega \in \Omega$ construct a positive cone $A_+ \subset A$
- On the other hand:

$$\Omega := \{ \omega \in A_+ | u(\omega) = 1 \}$$

Positive dual cone A_{+}^{*}

 \blacksquare It's dual cone $A_+^*\subset A^*$ is the set of e satisfying:

$$e(\omega) \ge 0 \quad \forall \ \omega \in \Omega$$

Positive dual cone A_{+}^{*}

■ It's dual cone $A_+^* \subset A^*$ is the set of e satisfying:

$$e(\omega) \ge 0 \quad \forall \ \omega \in \Omega$$

■ The convex set $E^A \subset A_+^*$ of effects e is given by:

$$E_A := \left\{ e \in A_+^* \middle| \sup_{\omega \in \Omega} e(\omega) \le 1 \right\}$$

Definition

A measurement apparatus M is represented by a set of effects $\{e\}$ each corresponding to one possible outcome e.

$$M = \{e\} \qquad \sum_{e \in M} e = u$$

Definition

A measurement apparatus M is represented by a set of effects $\{e\}$ each corresponding to one possible outcome e.

$$M = \{e\} \qquad \sum_{e \in M} e = u$$

 \blacksquare Carrying out a measurement maps a state ω to a normalized probability distribution $\{p_e\}$ with $p_e=e(\omega)$

Measurements

Definition

A measurement apparatus M is represented by a set of effects $\{e\}$ each corresponding to one possible outcome e.

$$M = \{e\} \qquad \sum_{e \in M} e = u$$

- \blacksquare Carrying out a measurement maps a state ω to a normalized probability distribution $\{p_e\}$ with $p_e = e(\omega)$
- The probability p_{any} to get any outcome is:

$$p_{any} = \sum p_e = \sum e(\omega) = u(\omega) = 1$$

Mathematical representation

II. Joint systems

Joint systems

Global State Assumption No-Signalling Principle
$$\} \implies AB_+ \subset A \otimes B$$

$$\left. \begin{array}{l} \mathsf{Global\ State\ Assumption} \\ \mathsf{No\text{-}Signalling\ Principle} \end{array} \right\} \implies AB_+ \subset A \otimes B$$

 \blacksquare AB_+ is bounded by:

$$A_{+} \otimes_{min} B_{+} \subseteq AB_{+} \subseteq A_{+} \otimes_{max} B_{+}$$

Joint systems

Global State Assumption No-Signalling Principle
$$\} \implies AB_+ \subset A \otimes B$$

 $\blacksquare AB_+$ is bounded by:

Joint systems

Global State Assumption No-Signalling Principle
$$\} \implies AB_+ \subset A \otimes B$$

 $\blacksquare AB_+$ is bounded by:

$$A_+ \otimes_{min} B_+ \subseteq AB_+ \subseteq A_+ \otimes_{max} B_+$$

 \blacksquare A particular theory must specify the positive cone AB_+ .

$$\omega_1^A\otimes\omega_1^B$$

$$\omega_1^A\otimes\omega_2^B$$

$$\omega_2^A\otimes\omega_1^B$$

$$\omega_2^A\otimes\omega_2^B$$

Minimal tensor product:

$$A_{+} \otimes_{min} B_{+} = \text{ConvexSpan}\{\omega^{A} \otimes \omega^{B}\}$$

Minimal tensor product:

$$A_+ \otimes_{min} B_+ = \text{ConvexSpan}\{\omega^A \otimes \omega^B\}$$

■ The same must hold for effects:

$$A_{+} \otimes_{max} B_{+} = \left\{ \omega^{AB} \in A \otimes B \middle| \omega^{AB} (e^{A} \otimes e^{B}) \ge 0 \right\}$$

■ Unit measure u^{AB} of the joint system $u^{AB} := u^A \otimes u^B$

- Unit measure u^{AB} of the joint system $u^{AB} := u^A \otimes u^B$
- State space Ω^{AB} of the joint system:

$$\Omega^{AB}:=\left\{ \omega^{AB}\in AB_{+}\right|u^{AB}(\omega)=1\right\}$$

- Unit measure u^{AB} of the joint system $u^{AB} := u^A \otimes u^B$
- State space Ω^{AB} of the joint system:

$$\Omega^{AB} := \left\{ \omega^{AB} \in AB_+ \middle| u^{AB}(\omega) = 1 \right\}$$

- Unit measure u^{AB} of the joint system $u^{AB} := u^A \otimes u^B$
- State space Ω^{AB} of the joint system:

$$\Omega^{AB} := \left\{ \omega^{AB} \in AB_+ \middle| u^{AB}(\omega) = 1 \right\}$$

- Unit measure u^{AB} of the joint system $u^{AB} := u^A \otimes u^B$
- State space Ω^{AB} of the joint system:

$$\Omega^{AB} := \left\{ \omega^{AB} \in AB_+ \middle| u^{AB}(\omega) = 1 \right\}$$

- Unit measure u^{AB} of the joint system $u^{AB} := u^A \otimes u^B$
- State space Ω^{AB} of the joint system:

$$\Omega^{AB}:=\left\{ \omega^{AB}\in AB_{+}\right|u^{AB}(\omega)=1\right\}$$

A particular physical theory is given by a particular choice of:

$$A_+, B_+, u^A, u^B$$
 and AB_+

Examples

I. Classical probability theory

lacktriangle State space Ω_{class} is a probability simplex

lacktriangle State space Ω_{class} is a probability simplex

lacksquare The extremal states $\{\omega_i\}$ form a basis of A

lacktriangle State space Ω_{class} is a probability simplex

lacksquare The extremal states $\{\omega_i\}$ form a basis of A

lacktriangle State space Ω_{class} is a probability simplex

lacktriangle The extremal states $\{\omega_i\}$ form a basis of A

lacktriangle State space Ω_{class} is a probability simplex

lacktriangle The extremal states $\{\omega_i\}$ form a basis of A

■ State space Ω_{class} is a probability simplex

lacksquare The extremal states $\{\omega_i\}$ form a basis of A

⇒ Unique decomposition of mixed states

lacksquare For classical systems $\Omega^A \otimes_{min} \Omega^B$ is equal to $\Omega^A \otimes_{max} \Omega^B$

- lacksquare For classical systems $\Omega^A\otimes_{min}\Omega^B$ is equal to $\Omega^A\otimes_{max}\Omega^B$
- Consequently there are no entangled states

- lacksquare For classical systems $\Omega^A\otimes_{min}\Omega^B$ is equal to $\Omega^A\otimes_{max}\Omega^B$
- Consequently there are no entangled states
- **Extremal** effects e_i connected to corresponding extremal states ω_i :

$$e_i(\omega_j) \propto \delta_{ij}$$

- lacksquare For classical systems $\Omega^A \otimes_{min} \Omega^B$ is equal to $\Omega^A \otimes_{max} \Omega^B$
- Consequently there are no entangled states
- **E**xtremal effects e_i connected to corresponding extremal states ω_i :

$$e_i(\omega_j) \propto \delta_{ij}$$

Systems is in a particular pure state all the time.

- lacksquare For classical systems $\Omega^A \otimes_{min} \Omega^B$ is equal to $\Omega^A \otimes_{max} \Omega^B$
- Consequently there are no entangled states
- **E**xtremal effects e_i connected to corresponding extremal states ω_i :

$$e_i(\omega_j) \propto \delta_{ij}$$

- Systems is in a particular pure state all the time.
- Mixed states are only a effective representation due a lack of knowledge

Examples

II. Quantum Mechanics

Linear space A is the Hilbert space of density matrices

- Linear space A is the Hilbert space of density matrices
- lacksquare A_+ is the set of selfadjoint, positive semi-definite matrices

- Linear space A is the Hilbert space of density matrices
- \blacksquare A_+ is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_+^* \cong A_+$

- Linear space A is the Hilbert space of density matrices
- A₊ is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_+^* \cong A_+$
- Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$e(\rho) = \operatorname{tr}(e^{\dagger} \rho)$$

- Linear space A is the Hilbert space of density matrices
- A₊ is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_+^* \cong A_+$
- Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$e(\rho) = \operatorname{tr}(e^{\dagger} \rho)$$

lacktriangle The unit measure u is the identity 1

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices
- A₊ is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_+^* \cong A_+$
- Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$e(\rho) = \operatorname{tr}(e^{\dagger} \rho)$$

- The unit measure u is the identity 1
- lue Ω is given by matrices with trace one, since:

$$u(\rho) = \operatorname{tr}(\mathbb{1} \rho) \stackrel{!}{=} 1$$

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices
- A₊ is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_+^* \cong A_+$
- Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$e(\rho) = \operatorname{tr}(e^{\dagger} \rho)$$

- The unit measure u is the identity 1
- lue Ω is given by matrices with trace one, since:

$$u(\rho) = \operatorname{tr}(\mathbb{1} \rho) \stackrel{!}{=} 1$$

■ Infinite number of extremal states ρ_{ex} with $\operatorname{tr}(\rho_{ex}^2) = 1$

The Bloch sphere

The Bloch sphere

The Bloch sphere

- lacktriangle For QM the positive cone AB_+ is again the set of hermitian positive semi-definite matrices
- This specifies the tensor product

- For QM the positive cone AB_+ is again the set of hermitian positive semi-definite matrices
- This specifies the tensor product
- It lies strictly between minimal and maximal tensor product:

$$\Omega^A \otimes_{min} \Omega^B \quad \subset \quad \Omega^{AB}_{qm} \quad \subset \quad \Omega^A \otimes_{max} \Omega^B$$

- For QM the positive cone AB_+ is again the set of hermitian positive semi-definite matrices
- This specifies the tensor product
- It lies strictly between minimal and maximal tensor product:

$$\Omega^A \otimes_{min} \Omega^B \quad \subset \quad \Omega^{AB}_{qm} \quad \subset \quad \Omega^A \otimes_{max} \Omega^B$$

lacktriangleright Entangled states ho^{AB} not maximally correlated

- For QM the positive cone AB_+ is again the set of hermitian positive semi-definite matrices
- This specifies the tensor product
- It lies strictly between minimal and maximal tensor product:

$$\Omega^A \otimes_{min} \Omega^B \quad \subset \quad \Omega^{AB}_{qm} \quad \subset \quad \Omega^A \otimes_{max} \Omega^B$$

- lacktriangled States ho^{AB} not maximally correlated
- Mixed states in subsystems of pure entangled joint states

Examples

III. The Gbit

$$A = \left\{ \omega = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix} \middle| \omega_{11} + \omega_{12} = \omega_{21} + \omega_{22} = c \right\}$$

$$A_{+} = \left\{ \omega = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix} \middle| \omega_{11} + \omega_{12} = \omega_{21} + \omega_{22} = c, \ \omega_{ij} \ge 0 \right\}$$

$$A_{+} = \left\{ \omega = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix} \middle| \omega_{11} + \omega_{12} = \omega_{21} + \omega_{22} = c, \ \omega_{ij} \ge 0 \right\}$$

$$u = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

$$u(\omega) = \operatorname{tr}(u^{\dagger} \omega) \stackrel{!}{=} 1$$

$$\Omega^{A} = \left\{ \omega = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix} \middle| \omega_{11} + \omega_{12} = \omega_{21} + \omega_{22} = 1, \ \omega_{ij} \ge 0 \right\}$$

$$\omega_1 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \quad \omega_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\omega_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \omega_4 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

Effects of the Gbit

$$e(\omega) = \operatorname{tr}(e^{\dagger} \omega) = \sum_{ij} e_{ij} \, \omega_{ij}$$

Effects of the Gbit

$$e(\omega) = \operatorname{tr}(e^{\dagger}\omega) = \sum_{ij} e_{ij} \,\omega_{ij} \in [0,1] \quad \forall \ \omega \in \Omega^A, \ e \in E^A$$

$$\omega_1: \quad 0 \le e_{21} + e_{22} \le 1$$

$$\omega_2: \quad 0 \le e_{12} + e_{21} \le 1$$

$$\omega_3: \quad 0 \le e_{11} + e_{22} \le 1$$

$$\omega_4: \quad 0 \le e_{11} + e_{12} \le 1$$

Effects of the Gbit

$$e(\omega) = \operatorname{tr}(e^{\dagger}\omega) = \sum_{ij} e_{ij} \,\omega_{ij} \in [0,1] \quad \forall \ \omega \in \Omega^A, \ e \in E^A$$

$$\omega_1: \quad 0 \le e_{21} + e_{22} \le 1$$

$$\omega_2: \quad 0 \le e_{12} + e_{21} \le 1$$

$$\omega_3: \quad 0 \le e_{11} + e_{22} \le 1$$

$$\omega_4: \quad 0 \le e_{11} + e_{12} \le 1$$

$$e_1 = \frac{1}{4} \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} \ e_2 = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \ e_3 = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \ e_4 = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$$

States and effects

Thank you for your attention!

Literatur

[1] Howard Barnum, Jonathan Barrett, Matthew Leifer, and Alexander Wilce.

A generalized no-broadcasting theorem, 2007.

[2] Howard Barnum, Jonathan Barrett, Matthew Leifer, and Alexander Wilce.

Teleportation in General Probabilistic Theories, 2008.

→ Beamer slides: http://www.cgogolin.de