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GPT | Motivation and background

Quantum Mechanics works, but it is not well understood!

Niels Bohr (1885-1962)

“Jeder, der von sich behauptet, er habe die Quantenmechanik
verstanden, hat überhaupt nichts verstanden.”
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GPT | Motivation and background

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

Why Quantum Mechanics?

What are the alternatives?

Which properties of QM are genuine quantum?

Cloning is impossible in (almost) all non-classical GPTs
Broadcasting is impossible in (almost) all non-classical GPTs
Teleportation is possible in GPTs other that QM

How to generalize concepts like entanglement or entropy?
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Assumptions and fundamental concept

I. Isolated systems
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GPT | Assumptions and fundamental concept

An operational approach

Assumption

All one can learn about a given physical system is what one can learn by
performing measurements on it.

ω

? M 2

1

3
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GPT | Assumptions and fundamental concept

State

Definition

The state ω of a physical system is completely specified by giving the
probabilities for the outcomes of all measurements that can be
performed on it.
In turn, specifying the state ω, specifies all these probabilities.

ω ⇐⇒



p1

p2

p3

p4

p5

. . .


“state space”

Ω = {ω}
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GPT | Assumptions and fundamental concept

Effects

Definition

Every measurement outcome is associated with an effect e.
We write the probability to get this outcome when the system is in some
state ω as e(ω) ∈ [0, 1].

ω M 2

1

3
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Effects

Definition

Every measurement outcome is associated with an effect e.
We write the probability to get this outcome when the system is in some
state ω as e(ω) ∈ [0, 1].

ω M 2

1

3

e1(ω)

e2(ω)
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GPT | Assumptions and fundamental concept

A certain measurement outcome

Unit measure

For every physical system there is a special effect, the so called unit
measure u, defined by

u(ω) = 1 ∀ ω ∈ Ω

“Is the system in one of its states?”
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GPT | Assumptions and fundamental concept

Mixed states

Assumption

Mixing two states ω1 and ω2 results in state that is a convex combination

ω = p ω1 + (1− p) ω1 ,

a so called mixed states.

Definition

State that can not be written as a convex combination of states are
called pure or extremal.
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GPT | Assumptions and fundamental concept

. . . and everything becomes linear . . .

1 States must be represented by elements of a linear space A.

2 The state space ΩA ∈ A is convex and the extreme points of this set
are the pure states.

3 Effects are linear functionals on the state space e : Ω→ [0, 1].
4 The effects form a convex set EA in the dual space A∗.

ω ∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

p = e(ω) ≥ 0
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II. Joint systems
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GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t t

O

M

M

O
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GPT | Assumptions and fundamental concept

Fiducial measurements

Fiducial measurements

Giving the probabilities for all outcomes of a fiducial measurement is
sufficient to uniquely specify a state.

ω ⇐⇒



p1

p2

p3

p4

p5

. . .



⇐=


p1

p2

p3

p4
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GPT | Assumptions and fundamental concept

Global state assumption

Assumption

Fiducial measurements on system A and B are sufficient to specify the
state of the joint system AB.

Global State Assumption

No-Signalling Principle
=⇒ ωAB ∈ A⊗B
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Global state assumption

MB 2
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GPT | Assumptions and fundamental concept

Summary and consequences

Isolated systems:

Operational approach

Mixed states
ω

ωAB

∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

Joint systems:

No-signalling

Global state

ωωAB ∈ ΩAB ⊂ A⊗B
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Mathematical representation

I. Isolated systems
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GPT | Mathematical representation

Linear space A

States ω are elements of a linear space A

Effects e are elements of its dual space A∗

Special properties for A of finite dimension:

A and A∗ are self dual

e(ω) can be regarded as a scalar product

A

ω

e

dim<∞∼= A∗

e
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GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =
∑

i

pi ωi

∑
i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Würzburg | 2009-01-28 22 / 44



GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =
∑

i

pi ωi

∑
i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Würzburg | 2009-01-28 22 / 44



GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =
∑

i

pi ωi

∑
i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Würzburg | 2009-01-28 22 / 44



GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =
∑

i

pi ωi

∑
i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Würzburg | 2009-01-28 22 / 44



GPT | Mathematical representation

Possible state spaces

Ω can have an infinite number of extremal states

Bond of the state space must not bend to the inside

No holes allowed

Must be connected
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GPT | Mathematical representation

Choosing the unit measure u

Next step to define a theory is to choose a unit measure:

u(ω) = 1 ∀ ω ∈ Ω

Extra dimension for the unit measure

State space in a hyperplane normal to u

A∗

Ω
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GPT | Mathematical representation

Positive cone A+

Positive linear combinations of states ω ∈ Ω construct a positive cone
A+ ⊂ A

On the other hand:

Ω := {ω ∈ A+|u(ω) = 1}

AA+
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GPT | Mathematical representation

Positive dual cone A∗+

It’s dual cone A∗+ ⊂ A∗ is the set of e satisfying:

e(ω) ≥ 0 ∀ ω ∈ Ω

The convex set EA ⊂ A∗+ of effects e is given by:

EA :=
{
e ∈ A∗+

∣∣∣∣ sup
ω∈Ω

e(ω) ≤ 1
}

A∗

A∗+

EA
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GPT | Mathematical representation

Measurements

Definition

A measurement apparatus M is represented by a set of effects {e} each
corresponding to one possible outcome e.

M = {e}
∑
e∈M

e = u

Carrying out a measurement maps a state ω to a normalized
probability distribution {pe} with pe = e(ω)
The probability pany to get any outcome is:

pany =
∑

pe =
∑

e(ω) = u(ω) = 1
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Mathematical representation

II. Joint systems
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GPT | Mathematical representation

Joint systems

Global State Assumption

No-Signalling Principle
=⇒ AB+ ⊂ A⊗B

AB+ is bounded by:

A+ ⊗min B+ ⊆ AB+ ⊆ A+ ⊗max B+

A particular theory must specify the positive cone AB+.
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GPT | Mathematical representation

Tensor products

ωA ωB

ωA
1 ⊗ ωB

2

ωA
2 ⊗ ωB

1 ωA
2 ⊗ ωB

2

Minimal tensor product:

A+ ⊗min B+ = ConvexSpan
{
ωA ⊗ ωB

}
The same must hold for effects:

A+ ⊗max B+ =
{
ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0
}
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GPT | Mathematical representation

State space ΩAB of joint systems

Unit measure uAB of the joint system uAB := uA ⊗ uB

State space ΩAB of the joint system:

ΩAB :=
{
ωAB ∈ AB+

∣∣uAB(ω) = 1
}

ΩA ⊗min ΩB

ΩA ⊗max ΩB

seperable

entangled

A particular physical theory is given by a particular choice of:

A+, B+, u
A, uB and AB+
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Examples

I. Classical probability theory
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Classical probability theory

State space Ωclass is a probability simplex

The extremal states {ωi} form a basis of A

ω1 ω2

e1 e2

e1

e3

e2

Ω1

Ω3
Ω2

uA ?
⇒ Unique decomposition of mixed states
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Classical joint systems and measurement

For classical systems ΩA ⊗min ΩB is equal to ΩA ⊗max ΩB

Consequently there are no entangled states

Extremal effects ei connected to corresponding extremal states ωi:

ei(ωj) ∝ δij

Systems is in a particular pure state all the time.

Mixed states are only a effective representation due a lack of
knowledge
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Examples

II. Quantum Mechanics
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GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+
∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2
ex) = 1
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The Bloch sphere
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Joint systems in QM

For QM the positive cone AB+ is again the set of hermitian positive
semi-definite matrices

This specifies the tensor product

It lies strictly between minimal and maximal tensor product:

ΩA ⊗min ΩB ⊂ ΩAB
qm ⊂ ΩA ⊗max ΩB

Entangled states ρAB not maximally correlated

Mixed states in subsystems of pure entangled joint states
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III. The Gbit
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Building a GPT from scratch

ΩA =
{
ω =

(
ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = 1

, ωij ≥ 0

}
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Building a GPT from scratch

A+ =
{
ω =

(
ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = c, ωij ≥ 0
}

u =
(

1/2 1/2
1/2 1/2

)

u(ω) = tr(u† ω) != 1

u
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Building a GPT from scratch

ΩA =
{
ω =

(
ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = 1, ωij ≥ 0
}

ω1 =
(

0 1
0 1

)
ω2 =

(
0 1
1 0

)

ω3 =
(

1 0
0 1

)
ω4 =

(
1 0
1 0

)
WA

Ω1

Ω3

Ω4

Ω2

u
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Effects of the Gbit

e(ω) = tr(e† ω) =
∑
ij

eij ωij

∈ [0, 1] ∀ ω ∈ ΩA, e ∈ EA

ω1 : 0 ≤ e21 + e22 ≤ 1
ω2 : 0 ≤ e12 + e21 ≤ 1
ω3 : 0 ≤ e11 + e22 ≤ 1
ω4 : 0 ≤ e11 + e12 ≤ 1

e1 = 1
4

(
−1 3
1 1

)
e2 = 1

4

(
1 1
3 −1

)
e3 = 1

4

(
1 1
−1 3

)
e4 = 1

4

(
3 −1
1 1

)
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States and effects

WA

e3

e4

e2

e1

Ω1

Ω3

Ω4

Ω2

u
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Thank you for your attention!
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−→ Beamer slides: http://www.cgogolin.de
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