Generalized Probabilistic Theories

Peter Janotta
Christian Gogolin
Julius-Maximilians-Universität Würzburg
National University of Singapore
2009-01-28

Table of contents

1 Motivation and background

2 Assumptions and fundamental concept

3 Mathematical representation

4 Examples

Motivation and background

Quantum Mechanics works, but it is not well understood!

Niels Bohr (1885-1962)

"Jeder, der von sich behauptet, er habe die Quantenmechanik verstanden, hat überhaupt nichts verstanden."

Better understanding by generalization

Statistical

Mechanics

Better understanding by generalization

Better understanding by generalization

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

■ Why Quantum Mechanics?

- What are the alternatives?

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

■ Why Quantum Mechanics?

- What are the alternatives?

■ Which properties of QM are genuine quantum?

- Cloning is impossible in (almost) all non-classical GPTs
- Broadcasting is impossible in (almost) all non-classical GPTs
- Teleportation is possible in GPTs other that QM

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

■ Why Quantum Mechanics?
■ What are the alternatives?
■ Which properties of QM are genuine quantum?

- Cloning is impossible in (almost) all non-classical GPTs
- Broadcasting is impossible in (almost) all non-classical GPTs
- Teleportation is possible in GPTs other that QM

■ How to generalize concepts like entanglement or entropy?

Assumptions and fundamental concept

I. Isolated systems

An operational approach

Assumption

All one can learn about a given physical system is what one can learn by performing measurements on it.

An operational approach

Assumption

All one can learn about a given physical system is what one can learn by performing measurements on it.

An operational approach

Assumption

All one can learn about a given physical system is what one can learn by performing measurements on it.

An operational approach

Assumption

All one can learn about a given physical system is what one can learn by performing measurements on it.

State

Definition

The state ω of a physical system is completely specified by giving the probabilities for the outcomes of all measurements that can be performed on it.
In turn, specifying the state ω, specifies all these probabilities.

$$
\omega \Longleftrightarrow\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
\ldots
\end{array}\right)
$$

"state space"
$\Omega=\{\omega\}$

Effects

Definition

Every measurement outcome is associated with an effect e. We write the probability to get this outcome when the system is in some state ω as $e(\omega) \in[0,1]$.

Effects

Definition

Every measurement outcome is associated with an effect e.
We write the probability to get this outcome when the system is in some state ω as $e(\omega) \in[0,1]$.

Effects

Definition

Every measurement outcome is associated with an effect e.
We write the probability to get this outcome when the system is in some state ω as $e(\omega) \in[0,1]$.

A certain measurement outcome

Unit measure

For every physical system there is a special effect, the so called unit measure u, defined by

$$
u(\omega)=1 \forall \omega \in \Omega
$$

A certain measurement outcome

Unit measure

For every physical system there is a special effect, the so called unit measure u, defined by

$$
u(\omega)=1 \forall \omega \in \Omega
$$

"Is the system in one of its states?"

Mixed states

Assumption

Mixing two states ω_{1} and ω_{2} results in state that is a convex combination

$$
\omega=p \omega_{1}+(1-p) \omega_{1}
$$

a so called mixed states.

Mixed states

Assumption

Mixing two states ω_{1} and ω_{2} results in state that is a convex combination

$$
\omega=p \omega_{1}+(1-p) \omega_{1}
$$

a so called mixed states.

Definition

State that can not be written as a convex combination of states are called pure or extremal.

... and everything becomes linear

1 States must be represented by elements of a linear space A.
2 The state space $\Omega^{A} \in A$ is convex and the extreme points of this set are the pure states.

.... and everything becomes linear ...

1 States must be represented by elements of a linear space A.
2 The state space $\Omega^{A} \in A$ is convex and the extreme points of this set are the pure states.

3 Effects are linear functionals on the state space $e: \Omega \rightarrow[0,1]$.

$$
e(\omega)=p e\left(\omega_{1}\right)+(1-p) e\left(\omega_{2}\right)
$$

... and everything becomes linear ...

1 States must be represented by elements of a linear space A.
2 The state space $\Omega^{A} \in A$ is convex and the extreme points of this set are the pure states.

3 Effects are linear functionals on the state space $e: \Omega \rightarrow[0,1]$.
4 The effects form a convex set E^{A} in the dual space A^{*}.

... and everything becomes linear ...

1 States must be represented by elements of a linear space A.
2 The state space $\Omega^{A} \in A$ is convex and the extreme points of this set are the pure states.

3 Effects are linear functionals on the state space $e: \Omega \rightarrow[0,1]$.
4 The effects form a convex set E^{A} in the dual space A^{*}.

... and everything becomes linear ...

1 States must be represented by elements of a linear space A.
2 The state space $\Omega^{A} \in A$ is convex and the extreme points of this set are the pure states.

3 Effects are linear functionals on the state space $e: \Omega \rightarrow[0,1]$.
4 The effects form a convex set E^{A} in the dual space A^{*}.

Assumptions and fundamental concept

II. Joint systems

No-signalling

Assumption
 Local operations on disjoint subsystems commute.

$\omega^{A B}$

No-signalling

Assumption
 Local operations on disjoint subsystems commute.

A
B

No-signalling

Assumption

Local operations on disjoint subsystems commute.

No-signalling

Assumption

Local operations on disjoint subsystems commute.

No-signalling

Assumption
 Local operations on disjoint subsystems commute.

No-signalling

Assumption

Local operations on disjoint subsystems commute.

No-signalling

Assumption

Local operations on disjoint subsystems commute.

Fiducial measurements

Fiducial measurements

Giving the probabilities for all outcomes of a fiducial measurement is sufficient to uniquely specify a state.

$$
--()^{\circ}
$$

Fiducial measurements

Fiducial measurements

Giving the probabilities for all outcomes of a fiducial measurement is sufficient to uniquely specify a state.

$$
\theta-\text { - }
$$

Global state assumption

Assumption

Fiducial measurements on system A and B are sufficient to specify the state of the joint system $A B$.

Global state assumption

Assumption

Fiducial measurements on system A and B are sufficient to specify the state of the joint system $A B$.

Global State Assumption No-Signalling Principle

Global state assumption

B

Global state assumption

Global state assumption

Summary and consequences

■ Isolated systems:

- Operational approach

■ Mixed states
ϵ

Summary and consequences

■ Isolated systems:

- Operational approach

■ Mixed states

ϵ

■ Joint systems:

- No-signalling
. Global state

Mathematical representation

I. Isolated systems

Linear space A

■ States ω are elements of a linear space A

Linear space A

- States ω are elements of a linear space A
- Effects e are elements of its dual space A^{*}

Linear space A

- States ω are elements of a linear space A
- Effects e are elements of its dual space A^{*}

Special properties for A of finite dimension:
■ A and A^{*} are self dual

Linear space A

- States ω are elements of a linear space A
- Effects e are elements of its dual space A^{*}

Special properties for A of finite dimension:

- A and A^{*} are self dual
- $e(\omega)$ can be regarded as a scalar product

State space Ω

- The state space Ω is a convex set.

State space Ω

- The state space Ω is a convex set.
- This means that all convex combinations

$$
\omega=\sum_{i} p_{i} \omega_{i} \quad \sum_{i} p_{i}=1, p_{i} \geq 0
$$

are part of the state space Ω.

State space Ω

- The state space Ω is a convex set.
- This means that all convex combinations

$$
\omega=\sum_{i} p_{i} \omega_{i} \quad \sum_{i} p_{i}=1, p_{i} \geq 0
$$

are part of the state space Ω.
■ There is also a geometric interpretation of convexity...

State space Ω

- The state space Ω is a convex set.
- This means that all convex combinations

$$
\omega=\sum_{i} p_{i} \omega_{i} \quad \sum_{i} p_{i}=1, p_{i} \geq 0
$$

are part of the state space Ω.

- There is also a geometric interpretation of convexity. . .
- All states ω on a strait line connecting $\omega_{1}, \omega_{2} \in \Omega$ are part of Ω

Possible state spaces

■ Ω can have an infinite number of extremal states

Possible state spaces

■ Ω can have an infinite number of extremal states
■ Bond of the state space must not bend to the inside

Possible state spaces

■ Ω can have an infinite number of extremal states
■ Bond of the state space must not bend to the inside

Possible state spaces

■ Ω can have an infinite number of extremal states

- Bond of the state space must not bend to the inside
- No holes allowed

Possible state spaces

■ Ω can have an infinite number of extremal states
■ Bond of the state space must not bend to the inside
■ No holes allowed
■ Must be connected

Possible state spaces

■ Ω can have an infinite number of extremal states
■ Bond of the state space must not bend to the inside
■ No holes allowed
■ Must be connected

Choosing the unit measure u

- Next step to define a theory is to choose a unit measure:

$$
u(\omega)=1 \quad \forall \omega \in \Omega
$$

Choosing the unit measure u

■ Next step to define a theory is to choose a unit measure:

$$
u(\omega)=1 \quad \forall \omega \in \Omega
$$

- Extra dimension for the unit measure

Choosing the unit measure u

■ Next step to define a theory is to choose a unit measure:

$$
u(\omega)=1 \quad \forall \omega \in \Omega
$$

- Extra dimension for the unit measure
- State space in a hyperplane normal to u

Positive cone A_{+}

- Positive linear combinations of states $\omega \in \Omega$ construct a positive cone $A_{+} \subset A$

Positive cone A_{+}

■ Positive linear combinations of states $\omega \in \Omega$ construct a positive cone $A_{+} \subset A$

- On the other hand:

$$
\Omega:=\left\{\omega \in A_{+} \mid u(\omega)=1\right\}
$$

Positive dual cone A_{+}^{*}

- It's dual cone $A_{+}^{*} \subset A^{*}$ is the set of e satisfying:

$$
e(\omega) \geq 0 \quad \forall \omega \in \Omega
$$

Positive dual cone A_{+}^{*}

- It's dual cone $A_{+}^{*} \subset A^{*}$ is the set of e satisfying:

$$
e(\omega) \geq 0 \quad \forall \omega \in \Omega
$$

- The convex set $E^{A} \subset A_{+}^{*}$ of effects e is given by:

$$
E_{A}:=\left\{e \in A_{+}^{*} \mid \sup _{\omega \in \Omega} e(\omega) \leq 1\right\}
$$

Measurements

Definition

A measurement apparatus M is represented by a set of effects $\{e\}$ each corresponding to one possible outcome e.

$$
M=\{e\} \quad \sum_{e \in M} e=u
$$

Measurements

Definition

A measurement apparatus M is represented by a set of effects $\{e\}$ each corresponding to one possible outcome e.

$$
M=\{e\} \quad \sum_{e \in M} e=u
$$

■ Carrying out a measurement maps a state ω to a normalized probability distribution $\left\{p_{e}\right\}$ with $p_{e}=e(\omega)$

Measurements

Definition

A measurement apparatus M is represented by a set of effects $\{e\}$ each corresponding to one possible outcome e.

$$
M=\{e\} \quad \sum_{e \in M} e=u
$$

■ Carrying out a measurement maps a state ω to a normalized probability distribution $\left\{p_{e}\right\}$ with $p_{e}=e(\omega)$

- The probability $p_{a n y}$ to get any outcome is:

$$
p_{a n y}=\sum p_{e}=\sum e(\omega)=u(\omega)=1
$$

Mathematical representation

II. Joint systems

Joint systems

Global State Assumption
 No-Signalling Principle

Joint systems

Global State Assumption
 $$
\} \Longrightarrow \quad A B_{+} \subset A \otimes B
$$

- $A B_{+}$is bounded by:

$$
A_{+} \otimes_{\min } B_{+} \subseteq A B_{+} \subseteq A_{+} \otimes_{\max } B_{+}
$$

Joint systems

Global State Assumption
 $$
\} \Longrightarrow \quad A B_{+} \subset A \otimes B
$$

- $A B_{+}$is bounded by:

Joint systems

Global State Assumption
 $$
\} \Longrightarrow \quad A B_{+} \subset A \otimes B
$$

- $A B_{+}$is bounded by:

$$
A_{+} \otimes_{\min } B_{+} \subseteq A B_{+} \subseteq A_{+} \otimes_{\max } B_{+}
$$

■ A particular theory must specify the positive cone $A B_{+}$.

Tensor products

ω^{B}

Tensor products

Tensor products

Tensor products

$$
\omega_{1}^{A} \otimes \omega_{1}^{B}
$$

Tensor products

$$
\begin{array}{ll}
\omega_{1}^{A} \otimes \omega_{1}^{B} & \bullet \\
\omega_{1}^{A} \otimes \omega_{2}^{B} \\
\omega_{2}^{A} \otimes \omega_{1}^{B} & \bullet \omega_{2}^{A} \otimes \omega_{2}^{B}
\end{array}
$$

Tensor products

Tensor products

- Minimal tensor product:

$$
A_{+} \otimes_{\min } B_{+}=\text {ConvexSpan }\left\{\omega^{A} \otimes \omega^{B}\right\}
$$

Tensor products

- Minimal tensor product:
$A_{+} \otimes_{\text {min }} B_{+}=$ConvexSpan $\left\{\omega^{A} \otimes \omega^{B}\right\}$
- The same must hold for effects:

$$
A_{+} \otimes_{\max } B_{+}=\left\{\omega^{A B} \in A \otimes B \mid \omega^{A B}\left(e^{A} \otimes e^{B}\right) \geq 0\right\}
$$

State space $\Omega^{A B}$ of joint systems

■ Unit measure $u^{A B}$ of the joint system $u^{A B}:=u^{A} \otimes u^{B}$

State space $\Omega^{A B}$ of joint systems

- Unit measure $u^{A B}$ of the joint system $u^{A B}:=u^{A} \otimes u^{B}$
- State space $\Omega^{A B}$ of the joint system:

$$
\Omega^{A B}:=\left\{\omega^{A B} \in A B_{+} \mid u^{A B}(\omega)=1\right\}
$$

State space $\Omega^{A B}$ of joint systems

- Unit measure $u^{A B}$ of the joint system $u^{A B}:=u^{A} \otimes u^{B}$
- State space $\Omega^{A B}$ of the joint system:

$$
\Omega^{A B}:=\left\{\omega^{A B} \in A B_{+} \mid u^{A B}(\omega)=1\right\}
$$

State space $\Omega^{A B}$ of joint systems

- Unit measure $u^{A B}$ of the joint system $u^{A B}:=u^{A} \otimes u^{B}$
- State space $\Omega^{A B}$ of the joint system:

$$
\Omega^{A B}:=\left\{\omega^{A B} \in A B_{+} \mid u^{A B}(\omega)=1\right\}
$$

seperable

State space $\Omega^{A B}$ of joint systems

- Unit measure $u^{A B}$ of the joint system $u^{A B}:=u^{A} \otimes u^{B}$
- State space $\Omega^{A B}$ of the joint system:

$$
\Omega^{A B}:=\left\{\omega^{A B} \in A B_{+} \mid u^{A B}(\omega)=1\right\}
$$

State space $\Omega^{A B}$ of joint systems

- Unit measure $u^{A B}$ of the joint system $u^{A B}:=u^{A} \otimes u^{B}$
- State space $\Omega^{A B}$ of the joint system:

$$
\Omega^{A B}:=\left\{\omega^{A B} \in A B_{+} \mid u^{A B}(\omega)=1\right\}
$$

- A particular physical theory is given by a particular choice of:

$$
A_{+}, B_{+}, u^{A}, u^{B} \text { and } A B_{+}
$$

Examples

I. Classical probability theory

Classical probability theory

- State space $\Omega_{\text {class }}$ is a probability simplex

Classical probability theory

■ State space $\Omega_{\text {class }}$ is a probability simplex

- The extremal states $\left\{\omega_{i}\right\}$ form a basis of A

Classical probability theory

■ State space $\Omega_{\text {class }}$ is a probability simplex

■ The extremal states $\left\{\omega_{i}\right\}$ form a basis of A

Classical probability theory

■ State space $\Omega_{\text {class }}$ is a probability simplex

■ The extremal states $\left\{\omega_{i}\right\}$ form a basis of A

Classical probability theory

■ State space $\Omega_{\text {class }}$ is a probability simplex

■ The extremal states $\left\{\omega_{i}\right\}$ form a basis of A

Classical probability theory

- State space $\Omega_{\text {class }}$ is a probability simplex

- The extremal states $\left\{\omega_{i}\right\}$ form a basis of A

\Rightarrow Unique decomposition of mixed states

Classical joint systems and measurement

- For classical systems $\Omega^{A} \otimes_{\min } \Omega^{B}$ is equal to $\Omega^{A} \otimes_{\max } \Omega^{B}$

Classical joint systems and measurement

- For classical systems $\Omega^{A} \otimes_{\min } \Omega^{B}$ is equal to $\Omega^{A} \otimes_{\max } \Omega^{B}$
- Consequently there are no entangled states

Classical joint systems and measurement

- For classical systems $\Omega^{A} \otimes_{\min } \Omega^{B}$ is equal to $\Omega^{A} \otimes_{\max } \Omega^{B}$
- Consequently there are no entangled states

■ Extremal effects e_{i} connected to corresponding extremal states ω_{i} :

$$
e_{i}\left(\omega_{j}\right) \propto \delta_{i j}
$$

Classical joint systems and measurement

- For classical systems $\Omega^{A} \otimes_{\min } \Omega^{B}$ is equal to $\Omega^{A} \otimes_{\max } \Omega^{B}$
- Consequently there are no entangled states

■ Extremal effects e_{i} connected to corresponding extremal states ω_{i} :

$$
e_{i}\left(\omega_{j}\right) \propto \delta_{i j}
$$

■ Systems is in a particular pure state all the time.

Classical joint systems and measurement

- For classical systems $\Omega^{A} \otimes_{\min } \Omega^{B}$ is equal to $\Omega^{A} \otimes_{\max } \Omega^{B}$
- Consequently there are no entangled states

■ Extremal effects e_{i} connected to corresponding extremal states ω_{i} :

$$
e_{i}\left(\omega_{j}\right) \propto \delta_{i j}
$$

■ Systems is in a particular pure state all the time.
■ Mixed states are only a effective representation due a lack of knowledge

Examples

II. Quantum Mechanics

Quantum Mechanics

■ Linear space A is the Hilbert space of density matrices

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices

■ A_{+}is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices
- A_{+}is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_{+}^{*} \cong A_{+}$

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices
- A_{+}is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_{+}^{*} \cong A_{+}$

■ Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$
e(\rho)=\operatorname{tr}\left(e^{\dagger} \rho\right)
$$

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices
- A_{+}is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_{+}^{*} \cong A_{+}$

■ Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$
e(\rho)=\operatorname{tr}\left(e^{\dagger} \rho\right)
$$

- The unit measure u is the identity $\mathbb{1}$

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices
- A_{+}is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_{+}^{*} \cong A_{+}$

■ Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$
e(\rho)=\operatorname{tr}\left(e^{\dagger} \rho\right)
$$

- The unit measure u is the identity $\mathbb{1}$
$\square \Omega$ is given by matrices with trace one, since:

$$
u(\rho)=\operatorname{tr}(\mathbb{1} \rho) \stackrel{!}{=} 1
$$

Quantum Mechanics

- Linear space A is the Hilbert space of density matrices
- A_{+}is the set of selfadjoint, positive semi-definite matrices
- Quantum Mechanics is a self-dual theory: $A_{+}^{*} \cong A_{+}$

■ Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

$$
e(\rho)=\operatorname{tr}\left(e^{\dagger} \rho\right)
$$

- The unit measure u is the identity $\mathbb{1}$
$\square \Omega$ is given by matrices with trace one, since:

$$
u(\rho)=\operatorname{tr}(\mathbb{1} \rho) \stackrel{!}{=} 1
$$

■ Infinite number of extremal states $\rho_{e x}$ with $\operatorname{tr}\left(\rho_{e x}^{2}\right)=1$

The Bloch sphere

The Bloch sphere

The Bloch sphere

Joint systems in QM

■ For QM the positive cone $A B_{+}$is again the set of hermitian positive semi-definite matrices

■ This specifies the tensor product

Joint systems in QM

■ For QM the positive cone $A B_{+}$is again the set of hermitian positive semi-definite matrices

- This specifies the tensor product
- It lies strictly between minimal and maximal tensor product:

$$
\Omega^{A} \otimes_{\min } \Omega^{B} \quad \subset \quad \Omega_{q m}^{A B} \quad \subset \quad \Omega^{A} \otimes_{\max } \Omega^{B}
$$

Joint systems in QM

■ For QM the positive cone $A B_{+}$is again the set of hermitian positive semi-definite matrices

- This specifies the tensor product
- It lies strictly between minimal and maximal tensor product:

$$
\Omega^{A} \otimes_{\min } \Omega^{B} \quad \subset \quad \Omega_{q m}^{A B} \quad \subset \quad \Omega^{A} \otimes_{\max } \Omega^{B}
$$

- Entangled states $\rho^{A B}$ not maximally correlated

Joint systems in QM

■ For QM the positive cone $A B_{+}$is again the set of hermitian positive semi-definite matrices

- This specifies the tensor product
- It lies strictly between minimal and maximal tensor product:

$$
\Omega^{A} \otimes_{\min } \Omega^{B} \quad \subset \quad \Omega_{q m}^{A B} \quad \subset \quad \Omega^{A} \otimes_{\max } \Omega^{B}
$$

- Entangled states $\rho^{A B}$ not maximally correlated

■ Mixed states in subsystems of pure entangled joint states

Examples

III. The Gbit

Building a GPT from scratch

$$
A=\left\{\left.\omega=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right) \right\rvert\, \omega_{11}+\omega_{12}=\omega_{21}+\omega_{22}=c\right.
$$

Building a GPT from scratch

$$
A_{+}=\left\{\left.\omega=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right) \right\rvert\, \omega_{11}+\omega_{12}=\omega_{21}+\omega_{22}=c, \omega_{i j} \geq 0\right\}
$$

Building a GPT from scratch

$$
\begin{gathered}
A_{+}=\left\{\left.\omega=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right) \right\rvert\, \omega_{11}+\omega_{12}=\omega_{21}+\omega_{22}=c, \omega_{i j} \geq 0\right\} \\
u=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) \\
u(\omega)=\operatorname{tr}\left(u^{\dagger} \omega\right) \stackrel{!}{=} 1
\end{gathered}
$$

Building a GPT from scratch

$$
\begin{aligned}
& \Omega^{A}=\left\{\left.\omega=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right) \right\rvert\, \omega_{11}+\omega_{12}=\omega_{21}+\omega_{22}=1, \omega_{i j} \geq 0\right\} \\
& \omega_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) \quad \omega_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \omega_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \omega_{4}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Effects of the Gbit

$$
e(\omega)=\operatorname{tr}\left(e^{\dagger} \omega\right)=\sum_{i j} e_{i j} \omega_{i j}
$$

Effects of the Gbit

$$
\begin{gathered}
e(\omega)=\operatorname{tr}\left(e^{\dagger} \omega\right)=\sum_{i j} e_{i j} \omega_{i j} \in[0,1] \quad \forall \omega \in \Omega^{A}, e \in E^{A} \\
\omega_{1}: \quad 0 \leq e_{21}+e_{22} \leq 1 \\
\omega_{2}: \quad 0 \leq e_{12}+e_{21} \leq 1 \\
\omega_{3}: \quad 0 \leq e_{11}+e_{22} \leq 1 \\
\omega_{4}: \quad 0 \leq e_{11}+e_{12} \leq 1
\end{gathered}
$$

Effects of the Gbit

$$
\begin{gathered}
e(\omega)=\operatorname{tr}\left(e^{\dagger} \omega\right)=\sum_{i j} e_{i j} \omega_{i j} \in[0,1] \quad \forall \omega \in \Omega^{A}, e \in E^{A} \\
\omega_{1}: \quad 0 \leq e_{21}+e_{22} \leq 1 \\
\omega_{2}: \quad 0 \leq e_{12}+e_{21} \leq 1 \\
\omega_{3}: \quad 0 \leq e_{11}+e_{22} \leq 1 \\
\omega_{4}: \quad 0 \leq e_{11}+e_{12} \leq 1
\end{gathered} \quad \begin{aligned}
& e_{1}=\frac{1}{4}\left(\begin{array}{cc}
-1 & 3 \\
1 & 1
\end{array}\right) e_{2}=\frac{1}{4}\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right) e_{3}=\frac{1}{4}\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right) e_{4}=\frac{1}{4}\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

States and effects

Thank you for your attention!

Literatur

[1] Howard Barnum, Jonathan Barrett, Matthew Leifer, and Alexander Wilce.
A generalized no-broadcasting theorem, 2007.
[2] Howard Barnum, Jonathan Barrett, Matthew Leifer, and Alexander Wilce.
Teleportation in General Probabilistic Theories, 2008.
\longrightarrow Beamer slides: http://www.cgogolin.de

