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Setup: A quantum system interacting with a much larger environment:
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Question:

What can we say about the time development of the quantum system
under minimal assumptions?

No added randomness: Bipartite quantum system with unitary time evolution
and a pure global state:

|ψt〉 ∈ H = HS ⊗HB

Hamiltonian: No restrictions on the interaction:

H = H 0 + H S ⊗1 + 1⊗ H B + H SB

H 0 ∝ 1 Tr[H S] = Tr[H B] = Tr[H SB] = 0

One very weak assumption: “non-degenerate energy gaps”

Ek − El = Em − En

=⇒ k = l ∧m = n ∨ k = m ∧ l = n

Important quantity: Effective dimension of the time averaged state ω = 〈ρt〉t:

d eff(ω) =
1

Tr[ω2]

What is known:

Equilibration

Theorem 2 in [2]: For a random pure state |ψ0〉 ∈ H, the probability that
d eff(ω) is smaller than d/4, d = dim(H) is exponentially small:
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Theorem 1 in [2]: The reduced state ρS
t is close to its time average ωS if
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Speed of fluctuations around equilibrium

Speed of the reduced state:

vS(t) = lim
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Theorem from [3]: The reduced state is slow if d eff(ω)� d 3
S :

〈vS(t)〉t ≤ ‖H S ⊗1 + H SB ‖∞
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Decoherence à la Zurek

Needs a special Hamiltonian with pointer sates |p〉 [4]:

H =
∑

p

|p〉〈p| ⊗ H
(p)

Ut =
∑

p

|p〉〈p| ⊗ U
(p)
t

Off-diagonal elements in the pointer basis are suppressed (einselection):

〈p|ρS
t |p′〉 = 〈p|ρS
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New results:

Einselection without pointer states

Consider the experimentally relevant situation of weak coupling to the
environment.

Examples:

Electronic excitations of gases at moderate temperature

Radioactive decay

Quantum information processing

A generic weak interaction causes decoherence in the eigenbasis of the local
Hamiltonian:

Theorem 4 in [1]: All reduced states ρS which are slow in the sense that∥∥∥∥∥dρS

dt

∥∥∥∥∥
1

≤ ε

satisfy
max
k 6=l

2 |E S
k − E S

l | |ρS
kl | ≤ 2 ‖H SB ‖∞ + ε

where ρS
kl = 〈E S

k |ρS|E S
l 〉 and E S

k and |E S
k 〉 are eigenvalues/eigenstates of H S .

Consequences:

Assume weak interaction ‖H SB ‖∞� |E S
k − E S

l |
=⇒Coherent superposition of |E S

k 〉 and |E S
l 〉 are destroyed.

=⇒ ρS
t is almost diagonal in the H S eigenbasis most of the time.

Advantages:

No special assumptions on the Hamiltonian or bath (as opposed to Zurek)

Very general statements with broad applicability

Open problems:

Time for decoherence

Time for equilibration
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