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Setup

System, Hg, # g Bath, Hp, #p

O H’sB

PP = Trpli] pr = Trs[ir]

%:l[djt:%]
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A very weak assumption on the Hamiltonian

H = Ho+HsQL +1QHp+Hsp

o x 1 Tr[ g = Tr[ ] = Tr[# 5] =0
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A very weak assumption on the Hamiltonian

H = Hy+HsR1 +1Q # g+ Hsg

Sy x 1 Tr[#s] = Tr[# | = Tr[#sg] =0

Assumption 1

A Hamiltonian has non—degenerate energy gaps iff:
E.—-E =FE,—E,

—k=IlAm=nork=mAl=n
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Measure concentration in Hilbert space

Theorem 1

For random 1y € P1(H) with d = dim(H)

Pr {deg(w) < Z} < e eVd

d*f (w) = TY[{ﬂ] s |<w0|Ek ~ # energy eigenstates in v

(3]

http://www.cgogolin.de = University of Bristol | 2010-06-23



Measure concentration in Hilbert space

Theorem 1

For random 1y € P1(H) with d = dim(H)

Pr {deﬁ(w) < Z} < e eVd

d*f (w) = TY[{ﬂ] s |<w0|Ek ~ # energy eigenstates in v

= If d is large then d*%(w) is large.

(3]
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Equilibration

Theorem 2

For every 1y € P1(H)

where

w = (Y1)t

(3]
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Equilibration

Theorem 2

For every 1y € P1(H)

where

pi = Trp w® = (p )y w = (Pt

= If d*f(w) > d% then p7 equilibrates.

(3]
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Speed of the fluctuations around equilibrium

D(pt 7pt+6t . H dpt

http://www.cgogolin.de = University of Bristol | 2010-06-23



Speed of the fluctuations around equilibrium

__ Dlp ,p d dp; .
vs(t):(;ltlino (o? rrot) _ H P %:1%3[%,%]
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Speed of the fluctuations around equilibrium

dp;

. D(p ,p d :
vs() :(;Itlino (o? t+6t _ H P =i Trp[vy, H)
Theorem 3
For every vy € P1(H)
ds
(vs(t))e < || Hs @1 + HsB ||l0o deT(w)

http://www.cgogolin.de = University of Bristol | 2010-06-23



Speed of the fluctuations around equilibrium

dp;

. D(p ,p d :
vs() :(;Itlino (o? t+6t _ H P =i Trp[vy, H)
Theorem 3
For every vy € P1(H)
ds
(vs(t))e < || Hs @1 + HsB ||l0o deT(w)

= If d*(w) > d? then p is slow.
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Typical states of large quantum systems
m have a high average effective dimension,
m their subsystems equilibrate

m and fluctuate slowly around the equilibrium state.
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Approach 2: Decoherence a la Zurek

m Special Hamiltonian with pointer sates |p):

A =" |p)p| @ #P)
p

= Initial product state 1y = p§ ® Y&
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Approach 2: Decoherence a la Zurek

m Special Hamiltonian with pointer sates |p):

H =" |p)(p| ® #P)
p

= Initial product state vy = p5 ® ¥

Einselection

Off-diagonal elements in the pointer basis are suppressed:

Nt
wlpf 1Py = WS 1) WEITE) UP g8

/

~~

<1
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Pros and cons

‘ unitary evolution general mechanism
effective dynamics X v
einselection v X
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Pros and cons

‘ unitary evolution general mechanism
effective dynamics X v
einselection v X

Can we find a more general mechanism
based on standard Quantum Mechanics?
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Yes we can!

Given the interaction is weak
| 5B [loo < || 75 |loo;

when is the subsystem slow ?

H dﬂt

dp? .
% =1 Trp[iy, ]

=i Trg[t, #o+Hs 1 + 1 Q@ H# g+ Hsp]
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Yes we can!

Given the interaction is weak
17258 lloo < 1| s |loo,
when is the subsystem slow ? Hsp

1 ||dp?
vs(t) = Hpt

2| dt

1

dp? .
% =1 Trp[iy, ]

=i Trg[t, #o+Hs 1 + 1 Q@ H# g+ Hsp]
[4] = =i Trpy, #s 1+ Hgp]
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Tow competing forces

dpy . 0 S . )
%:1Tr3[¢t,%5®11+<%053]:1{p?a<%ls]+lTrB[wtwijB}
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Tow competing forces

dp7 . : :
% =1 Trg[Yy, #s QL+ Hgp) =ilp;], #s| +i Trph, H# sB]
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Decoherence under weak interaction

Tow competing forces

dp;

dt

i Trply, #s @1+ Hgp] =ip}, #s] +1 Trp[ty, H# s8]
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Tow competing forces

dp7 . : :
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Decoherence through weak interaction

Theorem 4
All reduced states p; satisfy

dp;
max2|B§ ~ BF| o] < 21| #sn e + H t

where sz = <E1§|Pt |El )-

(6]
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Decoherence through weak interaction

Theorem 4
All reduced states p; satisfy

dp?
2|ES — ES||p2] < 2|| 57 £t
f}ﬁf | By Clorl <21 s [loo + dt ||,
and moreover
Si1 .S dp}
maXE 2|E; — B oyl < 2| #sp oo + || 2|
kl)} dt ||,

where p3, = (EY |p? |EY).

(6]
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Decoherence through weak interaction

Theorem 4
All reduced states p; satisfy

d S
max2|Ef — BY|1ofi < 21| # 55 o+ | G

and moreover

dpy
H}CalXZﬂEk—EISHPENSQH%SBHoo‘*‘ CT; ;
)} 1

where sz = <E1§|Pt |El )-

— If #sp is weak and p7 is slow its off-diagonal elements are small.

(6]
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Consequences for small and large systems

max > 2|B; — Bl |pgl <2 5B lloo +

H dPt
{(k.D)} (o)

1
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Consequences for small and large systems

max > 2|B; — Bl |pgl <2 5B lloo +

H dPt
{(k.D)} (o)

1

Decoherence in the g
eigenbasis
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Consequences for small and large systems

max 32 |BF — ) 1o < 2| s oo + H
(kD) &

Decoherence in the g No Schrodinger's cat states
eigenbasis
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Take-home message

Typical states of large quantum systems
m have a high average effective dimension,
m their subsystems equilibrate
m and fluctuate slowly around the equilibrium state,

m and given the interaction is weak they are close to diagonal in the
local energy eigenbasis.
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Thank you for your attention!

— beamer slides: http://www.cgogolin.de
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