Pure state quantum statistical mechanics

Christian Gogolin

University of Bristol

2010-06-23

Classical Mechanics

[1, 2]

Thermodynamics Statistical Mechanics Second Law ergodicity equal a priory probabilities Classical Mechanics

[1, 2]

Why do electrons hop between energy eigenstates?

Why do electrons hop between energy eigenstates?

quantum mechanical orbitals

coherent superpositions

Why do electrons hop between energy eigenstates?

quantum mechanical orbitals

discrete energy levels

coherent superpositions

hopping

Table of contents

1 Setup and notation

2 Subsystem equilibration

3 Decoherence under weak interaction

Setup and notation

Operational distinguishability (trace distance)

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \max_{0 \le A \le 1} \operatorname{Tr}[A \rho] - \operatorname{Tr}[A \sigma]$$

Operational distinguishability (trace distance)

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \max_{0 \le A \le 1} \operatorname{Tr}[A \rho] - \operatorname{Tr}[A \sigma]$$

■ Time average

$$\omega = \langle \rho_t \rangle_t = \lim_{T \to \infty} \frac{1}{T} \int_0^T \rho_t \, dt$$

Operational distinguishability (trace distance)

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \max_{0 \le A \le 1} \operatorname{Tr}[A \rho] - \operatorname{Tr}[A \sigma]$$

■ Time average

$$\omega = \langle \rho_t \rangle_t = \lim_{T \to \infty} \frac{1}{T} \int_0^T \rho_t \, dt$$

$$d^{\text{eff}}(\omega) = \frac{1}{\text{Tr}(\omega^2)}$$

Operational distinguishability (trace distance)

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \max_{0 \le A \le 1} \operatorname{Tr}[A \rho] - \operatorname{Tr}[A \sigma]$$

■ Time average

$$\omega = \langle \rho_t \rangle_t = \lim_{T \to \infty} \frac{1}{T} \int_0^T \rho_t \, dt$$

$$d^{\mathrm{eff}}(\omega) = \frac{1}{\mathrm{Tr}(\omega^2)} \qquad d^{\mathrm{eff}}(\psi) = 1$$

Operational distinguishability (trace distance)

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \max_{0 \le A \le 1} \operatorname{Tr}[A \rho] - \operatorname{Tr}[A \sigma]$$

■ Time average

$$\omega = \langle \rho_t \rangle_t = \lim_{T \to \infty} \frac{1}{T} \int_0^T \rho_t \, dt$$

$$d^{\mathrm{eff}}(\omega) = \frac{1}{\mathrm{Tr}(\omega^2)}$$
 $d^{\mathrm{eff}}(\psi) = 1$ $d^{\mathrm{eff}}(\frac{\mathbb{1}}{d}) = d$

Operational distinguishability (trace distance)

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \max_{0 \le A \le 1} \operatorname{Tr}[A \rho] - \operatorname{Tr}[A \sigma]$$

■ Time average

$$\omega = \langle \rho_t \rangle_t = \lim_{T \to \infty} \frac{1}{T} \int_0^T \rho_t \, dt$$

$$\begin{split} d^{\mathrm{eff}}(\omega) &= \frac{1}{\mathrm{Tr}(\omega^2)} \qquad d^{\mathrm{eff}}(\psi) = 1 \quad d^{\mathrm{eff}}(\frac{1}{d}) = d \\ &\stackrel{\text{(Assumption 1)}}{=} \frac{1}{\sum_k |\langle \psi_0 | E_k \rangle|^4} \sim \ \# \ \mathrm{energy \ eigenstates \ in} \ \psi_0 \end{split}$$

Setup

System,
$$\mathcal{H}_S$$
, \mathscr{H}_S

Bath,
$$\mathcal{H}_B, \mathscr{H}_B$$

$$\rho_t^S = \mathrm{Tr}_B[\psi_t]$$

$$\rho_t^B = \text{Tr}_S[\psi_t]$$

$$\frac{d\psi_t}{dt}=\mathrm{i}\left[\psi_t,\mathscr{H}\right]$$

A very weak assumption on the Hamiltonian

$$\mathcal{H} = \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B + \mathcal{H}_{SB}$$

A very weak assumption on the Hamiltonian

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B + \mathcal{H}_{SB}$$

$$\mathcal{H}_0 \propto \mathbb{1}$$
 $\operatorname{Tr}[\mathcal{H}_S] = \operatorname{Tr}[\mathcal{H}_B] = \operatorname{Tr}[\mathcal{H}_{SB}] = 0$

A very weak assumption on the Hamiltonian

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B + \mathcal{H}_{SB}$$

$$\mathcal{H}_0 \propto \mathbb{1} \qquad \operatorname{Tr}[\mathcal{H}_S] = \operatorname{Tr}[\mathcal{H}_B] = \operatorname{Tr}[\mathcal{H}_{SB}] = 0$$

Assumption 1

A Hamiltonian has non-degenerate energy gaps iff:

$$E_k - E_l = E_m - E_n$$

$$\implies k = l \land m = n \text{ or } k = m \land l = n$$

Subsystem equilibration

Measure concentration in Hilbert space

Theorem 1

For random $\psi_0 \in \mathcal{P}_1(\mathcal{H})$ with $d = \dim(\mathcal{H})$

$$\Pr\left\{d^{\text{eff}}(\omega) < \frac{d}{4}\right\} \le 2 e^{-c\sqrt{d}}$$

$$d^{
m eff}(\omega)=rac{1}{{
m Tr}[\omega^2]}=rac{1}{\sum_k|\langle\psi_0|E_k
angle|^4}\sim\#$$
 energy eigenstates in ψ_0

Measure concentration in Hilbert space

Theorem 1

For random $\psi_0 \in \mathcal{P}_1(\mathcal{H})$ with $d = \dim(\mathcal{H})$

$$\Pr\left\{d^{\text{eff}}(\omega) < \frac{d}{4}\right\} \le 2 e^{-c\sqrt{d}}$$

$$\begin{split} d^{\mathrm{eff}}(\omega) &= \tfrac{1}{\mathrm{Tr}[\omega^2]} = \tfrac{1}{\sum_k |\langle \psi_0 | E_k \rangle|^4} \sim \# \text{ energy eigenstates in } \psi_0 \\ &\Longrightarrow \mathrm{If} \ d \text{ is large then } d^{\mathrm{eff}}(\omega) \text{ is large}. \end{split}$$

Equilibration

Theorem 2

For every $\psi_0 \in \mathcal{P}_1(\mathcal{H})$

$$\langle \mathcal{D}(\rho_t^S, \omega^S) \rangle_t \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}(\omega)}}$$

where

$$\rho_t^S = \operatorname{Tr}_B \psi_t \qquad \qquad \omega^S = \langle \rho_t^S \rangle_t \qquad \qquad \omega = \langle \psi_t \rangle_t$$

Equilibration

Theorem 2

For every $\psi_0 \in \mathcal{P}_1(\mathcal{H})$

$$\langle \mathcal{D}(\rho_t^S, \omega^S) \rangle_t \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}(\omega)}}$$

where

$$\rho_t^S = \operatorname{Tr}_B \psi_t \qquad \qquad \omega^S = \langle \rho_t^S \rangle_t \qquad \qquad \omega = \langle \psi_t \rangle_t$$

$$\Longrightarrow$$
 If $d^{\text{eff}}(\omega) \gg d_S^2$ then ρ_t^S equilibrates.

$$v_S(t) = \lim_{\delta t \to 0} \frac{\mathcal{D}(\rho_t^S, \rho_{t+\delta t}^S)}{\delta t} = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

$$v_S(t) = \lim_{\delta t \to 0} \frac{\mathcal{D}(\rho_t^S, \rho_{t+\delta t}^S)}{\delta t} = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1 \qquad \frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}]$$

$$v_S(t) = \lim_{\delta t \to 0} \frac{\mathcal{D}(\rho_t^S, \rho_{t+\delta t}^S)}{\delta t} = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1 \qquad \frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}]$$

Theorem 3

For every $\psi_0 \in \mathcal{P}_1(\mathcal{H})$

$$\langle v_S(t) \rangle_t \le \| \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB} \|_{\infty} \sqrt{\frac{d_S^3}{d^{\text{eff}}(\omega)}}$$

$$v_S(t) = \lim_{\delta t \to 0} \frac{\mathcal{D}(\rho_t^S, \rho_{t+\delta t}^S)}{\delta t} = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1 \qquad \frac{d\rho_t^S}{dt} = \mathrm{i} \ \mathrm{Tr}_B[\psi_t, \mathcal{H}]$$

Theorem 3

For every $\psi_0 \in \mathcal{P}_1(\mathcal{H})$

$$\langle v_S(t) \rangle_t \leq \| \, \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB} \, \|_{\infty} \sqrt{\frac{d_S^3}{d^{\mathit{eff}}(\omega)}}$$

$$\Longrightarrow$$
 If $d^{\rm eff}(\omega)\gg d_S^3$ then ρ_t^S is slow.

Summary

Typical states of large quantum systems

- have a high average effective dimension,
- their subsystems equilibrate
- and fluctuate slowly around the equilibrium state.

Decoherence under weak interaction

Approach 1: Effective dynamics

standard QM:

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}]$$

Approach 1: Effective dynamics

standard QM:

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}]$$

effective dynamics:

$$\frac{d\rho_t^S}{dt} = \mathrm{i} \left[\rho_t^S, \mathscr{H}_S \right] + \mathrm{i} \ \mathcal{L}(\rho_t^S)$$

Approach 2: Decoherence à la Zurek

■ Special Hamiltonian with pointer sates $|p\rangle$:

$$\mathscr{H} = \sum_{p} |p\rangle\langle p| \otimes \mathscr{H}^{(p)}$$

lacksquare Initial product state $\psi_0=
ho_0^S\otimes\psi_0^B$

Approach 2: Decoherence à la Zurek

■ Special Hamiltonian with pointer sates $|p\rangle$:

$$\mathscr{H} = \sum_{p} |p\rangle\langle p| \otimes \mathscr{H}^{(p)}$$

Initial product state $\psi_0=
ho_0^S\otimes\psi_0^B$

Einselection

Off-diagonal elements in the pointer basis are suppressed:

$$\langle p|\rho_t^S|p'\rangle = \langle p|\rho_0^S|p'\rangle\underbrace{\langle \psi_0^B|{U_t^{(p')}}^\dagger U_t^{(p)}|\psi_0^B\rangle}_{\leq 1}$$

Pure state quantum statistical mechanics | Decoherence under weak interaction

Comparison

Comparison

Can we find a more general mechanism based on standard Quantum Mechanics?

Pure state quantum statistical mechanics | Decoherence under weak interaction

Yes we can!

Yes we can!

Given the interaction is weak

$$\|\mathscr{H}_{SB}\|_{\infty} \ll \|\mathscr{H}_{S}\|_{\infty},$$

Yes we can!

Given the interaction is weak

$$\|\mathcal{H}_{SB}\|_{\infty} \ll \|\mathcal{H}_{S}\|_{\infty},$$

$$v_S(t) = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

Given the interaction is weak

$$\|\mathscr{H}_{SB}\|_{\infty} \ll \|\mathscr{H}_{S}\|_{\infty},$$

$$v_S(t) = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathscr{H}]$$

Yes we can!

Given the interaction is weak

$$\|\mathscr{H}_{SB}\|_{\infty} \ll \|\mathscr{H}_{S}\|_{\infty},$$

$$v_S(t) = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

$$\mathcal{H}_S$$
 \mathcal{H}_B \mathcal{H}_B

$$\begin{aligned} \frac{d\rho_t^S}{dt} &= \mathrm{i} \ \mathrm{Tr}_B[\psi_t, \mathcal{H}] \\ &= \mathrm{i} \ \mathrm{Tr}_B[\psi_t, \mathcal{H}_0 + \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B + \mathcal{H}_{SB}] \end{aligned}$$

Yes we can!

Given the interaction is weak

$$\|\mathcal{H}_{SB}\|_{\infty} \ll \|\mathcal{H}_{S}\|_{\infty},$$

$$v_S(t) = \frac{1}{2} \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

$$\mathcal{H}_S$$
 \mathcal{H}_B \mathcal{H}_S

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}]$$

$$= i \operatorname{Tr}_B[\psi_t, \mathcal{H}_0 + \mathcal{H}_S \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_B + \mathcal{H}_{SB}]$$

$$[4] \Longrightarrow = i \operatorname{Tr}_B[\psi_t, \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB}]$$

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB}] = i \left[\rho_t^S, \mathcal{H}_S\right] + i \operatorname{Tr}_B[\psi_t, \mathcal{H}_{SB}]$$

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB}] = i \left[\rho_t^S, \mathcal{H}_S\right] + i \operatorname{Tr}_B[\psi_t, \mathcal{H}_{SB}]$$

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB}] = i \left[\rho_t^S, \mathcal{H}_S\right] + i \operatorname{Tr}_B[\psi_t, \mathcal{H}_{SB}]$$

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB}] = i \left[\rho_t^S, \mathcal{H}_S\right] + i \operatorname{Tr}_B[\psi_t, \mathcal{H}_{SB}]$$

$$\frac{d\rho_t^S}{dt} = i \operatorname{Tr}_B[\psi_t, \mathcal{H}_S \otimes \mathbb{1} + \mathcal{H}_{SB}] = i \left[\rho_t^S, \mathcal{H}_S\right] + i \operatorname{Tr}_B[\psi_t, \mathcal{H}_{SB}]$$

Decoherence through weak interaction

Theorem 4

All reduced states ρ_t^S satisfy

$$\max_{k \neq l} 2 |E_k^S - E_l^S| |\rho_{kl}^S| \le 2 \| \mathcal{H}_{SB} \|_{\infty} + \left\| \frac{d\rho_t^S}{dt} \right\|_1,$$

where
$$\rho_{kl}^S = \langle E_k^S | \rho_t^S | E_l^S \rangle$$
.

Decoherence through weak interaction

Theorem 4

All reduced states ρ_t^S satisfy

$$\max_{k \neq l} 2 |E_k^S - E_l^S| |\rho_{kl}^S| \le 2 \| \mathcal{H}_{SB} \|_{\infty} + \left\| \frac{d\rho_t^S}{dt} \right\|_1,$$

and moreover

$$\max_{\{(k,l)\}} \sum_{(k,l)} 2 \left| E_k^S - E_l^S \right| \left| \rho_{kl}^S \right| \leq 2 \left\| \, \mathscr{H}_{SB} \, \right\|_\infty + \left\| \frac{d \rho_t^S}{dt} \right\|_1,$$

where $\rho_{kl}^S = \langle E_k^S | \rho_t^S | E_l^S \rangle$.

Decoherence through weak interaction

Theorem 4

All reduced states ρ_t^S satisfy

$$\max_{k \neq l} 2 |E_k^S - E_l^S| |\rho_{kl}^S| \le 2 \| \mathcal{H}_{SB} \|_{\infty} + \left\| \frac{d\rho_t^S}{dt} \right\|_1,$$

and moreover

$$\max_{\{(k,l)\}} \sum_{(k,l)} 2 |E_k^S - E_l^S| |\rho_{kl}^S| \le 2 \| \mathscr{H}_{SB} \|_{\infty} + \left\| \frac{d\rho_t^S}{dt} \right\|_1,$$

where $\rho_{kl}^S = \langle E_k^S | \rho_t^S | E_l^S \rangle$.

 \Longrightarrow If \mathscr{H}_{SB} is weak and ρ_t^S is slow its off-diagonal elements are small.

[6]

Consequences for small and large systems

$$\max_{\{(k,l)\}} \sum_{(k,l)} 2 |E_k^S - E_l^S| |\rho_{kl}^S| \le 2 \| \mathcal{H}_{SB} \|_{\infty} + \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

Consequences for small and large systems

$$\max_{\{(k,l)\}} \sum_{(k,l)} 2 |E_k^S - E_l^S| |\rho_{kl}^S| \le 2 \| \mathcal{H}_{SB} \|_{\infty} + \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

Decoherence in the \mathscr{H}_S eigenbasis

Consequences for small and large systems

$$\max_{\left\{(k,l)\right\}} \sum_{(k,l)} 2\left|E_k^S - E_l^S\right| \left|\rho_{kl}^S\right| \leq 2\left\| \, \mathscr{H}_{SB} \, \right\|_{\infty} + \left\| \frac{d\rho_t^S}{dt} \right\|_1$$

Decoherence in the \mathscr{H}_S eigenbasis

No Schrödinger's cat states

Take-home message

Typical states of large quantum systems

- have a high average effective dimension,
- their subsystems equilibrate
- and fluctuate slowly around the equilibrium state,
- and given the interaction is weak they are close to diagonal in the local energy eigenbasis.

References

[1] C. Gogolin,

"Pure state quantum statistical mechanics", Master's thesis, Julius-Maximilians Universität Würzburg, 2010.

http://arxiv.org/abs/1003.5058.

- [2] S. Popescu, A. J. Short, and A. Winter, "Entanglement and the foundations of statistical mechanics", Nature Physics 2 (2006) no. 11, 754.
- 3] N. Linden, S. Popescu, A. J. Short, and A. Winter, "Quantum mechanical evolution towards thermal equilibrium", *Physical Review E* **79** (2009) no. 6, 061103, 0812, 2385v1
- [4] N. Linden, S. Popescu, A. J. Short, and A. Winter, "On the speed of fluctuations around thermodynamic equilibrium", New Journal of Physics 12 (2010) no. 5, 055021, quant-ph/0511225.
- [5] W. Zurek, "Environment-induced superselection rules", Physical Review D 26 (1982) no. 8, 1862.
- [6] C. Gogolin, "Environment-induced super selection without pointer states", Physical Review E 81 (2010) no. 5, 051127, 0908. 2921 v4

Thank you for your attention!

→ beamer slides: http://www.cgogolin.de