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Boson Sampling on a Photonic Chip

Justin B. Spring,1∗ Benjamin J. Metcalf,1 Peter C. Humphreys,
1 W. Steven Kolthammer,

1

Xian-Min Jin,1,2 Marco Barbieri,1 Animesh Datta,1 Nicholas Thomas-Peter,
1 Nathan K. Langford,

1,3

Dmytro Kundys,4 James C. Gates,
4 Brian J. Smith,1 Peter G. R. Smith,

4 Ian A. Walmsley1∗

Although universal quantum computers ideally solve problems such as factoring integers

exponentially more efficiently than classical machines, the formidable challenges in building such

devices motivate the demonstration of simpler, problem-specific algorithms th
at still promise a

quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to sample the

output distribution resulting from the nonclassical interference of photons in an integrated

photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal

quantum computation, boson sampling merely requires indistinguishable photons, linear state

evolution, and detectors. We benchmarked our QBSM with three and four photons and analyzed

sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive

quantum-enhanced computation.

U
niversal quantum computers require phys-

ical systems that are well isolated from

the decohering effects of their environ-

ment, while at the same time allowing precise

manipulation during computation. They also re-

quire qubit-specific state initialization, measure-

ment, and generation of quantum correlations

across the system (1–4). Although there has been

substantial progress in proof-of-principle dem-

onstrations of quantum computation (5–8), simul-

taneously meeting these demands has proven

difficult. This motivates the search for schemes

that can demonstrate quantum-enhanced
compu-

tation under more favorable experimental condi-

tions. Investigating the space between c
lassical

and universal quantum computers has attracted

broad interest (9–11).

Boson sampling has recently been proposed

as a specific quantum computation that is more

efficient than its classical counterpart but only

requires indistinguishable bosons, low decoher-

ence linear evolution, andmeasurement (12). The

distribution of bosons that have undergone a

unitary transformation U is thought to be expo-

nentially hard to sample from classically (12). The

probability amplitude of obtaining a certain out-

put is directly proportional to the permanent of

a corresponding submatrix of U (13). The per-

manent expresses the wave function of identi-

cal bosons, which are symmetric under exchange

(14, 15); in contrast, the Slater determinant ex-

presses the wave function of identical fermions,

which are antisymmetric under exchange.W
hereas

determinants can be evaluated efficiently, per-

manents have long been believed to be hard to

compute (16); the best-known algorithm scales

exponentially with the size of the matrix.

One can envision a race between a class
ical

and a quantum machine to sample the boson

distribution given an input state and U. T
he clas-

sical machine would evaluate at least part of

the probability distribution, which requires the

analysis of matrix permanents. An ideal q
uantum

boson-sampling machine (QBSM) instead cre-

ates indistinguishable bosons, physically im-

plements U, and records the outputs. Although

the QBSM is not believed to efficiently estimate

any individual matrix permanent, for a suffi-

ciently large system it is expected to beat the

classical computer in sampling over the entire

distribution (12).
Photonics is a natural platform to implement

boson sampling because sources of indistin-

guishable photons are well developed (1
7), and

integrated optics offers a scalable route to low

decoherence linear transformations over many

modes (18). Such circuits can be rapidly recon-

figured to sample from a user-defined operation

(19, 20). Importantly, boson sampling requires

neither nonlinearities nor on-demand entangle-

ment, which are substantial challenges in ph
oton-

ic universal quantum computation (21). This clears

the way for experimental boson sampling with

existing photonic technology, building on the

extensively studied two-photon Hong-Ou-Mandel

interference effect (22).

A QBSM (Fig. 1) samples the output distri-

bution of a multiparticle bosonic quantum state

|Yout〉, prepared from a specified initial state |T〉

and linear transformation L. Unavoidable losses

in the system implyLwill not be unitary, although

lossy QBSMs can still surpass classical com-

putation (12, 23). A trial begins with the input

state jT〉 ¼ jT1…TM 〉 º PM
i¼1ða%†i ÞTi j0〉, which

describesN ¼ ∑M
i¼1Ti particles distribu

ted inM

input modes in the occupation-number repre-

sentation. The output state |Yout〉 is generated

according to the linear map between input and

output mode creation operators a
%
†
i ¼ ∑M

j¼1Lijb
%†
j ,

whereL is anM ×Mmatrix. Lastly, the particles

in each of the M output modes are counted. The
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Fig. 1. Model of quantum boson sampling. Given

a specified initial number state |T〉 = |T1...TM〉 and

linear transformation L, a QBSM efficiently sam-

ples from the distribution P(S|T) of possible out-

comes |S〉 = |S1...SM〉.
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matrices for this graph at momenta –p/4 and–p/2 are

Sswitchð−p=4Þ ¼
0 0 e−ip=4
0 −1 0

e−ip=4 0 0

0
@

1
A

Sswitchð−p=2Þ ¼
1 0 0
0 0 −1
0 −1 0

0
@

1
A ð5Þ

The momentum switch has perfect transmissionbetween vertices 1 and 3 at momentum –p/4 andperfect transmission between vertices 2 and 3 atmomentum –p/2. Thus, the path a particle fol-lows through the switch depends on its momen-tum: A particle with momentum –p/2 follows thedouble line in Fig. 3A, whereas a particle withmomentum –p/4 follows the single line.The graph used to implement the Cq gate isshown in Fig. 3B [see section S4 of (32) for thenumbers of vertices on each of the paths]. To seewhy this graph implements a Cq gate, consid-er the movement of two particles as they passthrough the graph. If either particle begins in thestate j0in〉, it travels along a path to the outputwithout interacting with the second particle.Wheneither particle begins in the state j1in〉, it is routedonto the vertical path as it passes through the firstmomentum switch and is routed to the right as itpasses through the second switch. If both par-ticles begin in the state j1in〉, they interact on thevertical path and the wave function acquires aphase eiq.
To implement a circuit, the subgraphs rep-resenting circuit elements are connected by paths.Figure 4 depicts a graph corresponding to a sim-ple two-qubit computation. Timing is important:Wave packets must meet on the vertical paths forinteractions to occur.We achieve this by choosingthe numbers of vertices on each of the segmentsin the graph appropriately, taking into accountthe different propagation speeds of the two wavepackets [see section S4 of (32)]. In section S3.1of (32), we present a refinement of our schemeusing planar graphs with maximum degree four.By analyzing the full (n + 1)–particle inter-acting many-body system, we prove that our al-gorithm performs the desired quantum computationup to an error term that can be made arbitrarilysmall (32). Our analysis goes beyond the scat-tering theory discussion presented above; we takeinto account the fact that both the wave packetsand the graphs are finite. Specifically, we provethat by choosing the size of the wave packets, thenumber of vertices in the graph, and the totalevolution time to be polynomial functions of bothn and g, the error in simulating an n-qubit, g-gatequantum circuit is bounded above by an arbi-trarily small constant [section S5 of (32)]. Forexample, for the Bose-Hubbard model and forthe nearest-neighbor interaction model, we provethat the error can be made arbitrarily small bychoosing the size of the wave packets to beO(n12g4), the total number of vertices in the

graph to beO(n13g5), and the total evolution timeto be O(n12g5). The bounds we prove, althoughalmost certainly not optimal, are sufficient to es-tablish universality with only polynomial over-head. Because it is also possible to efficientlysimulate amultiparticle quantumwalk of the typewe consider using a universal quantum com-puter, this model exactly captures the power ofquantum computation.
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Photonic Boson Samplingin a Tunable Circuit
Matthew A. Broome,1,2* Alessandro Fedrizzi,1,2 Saleh Rahimi-Keshari,2 Justin Dove,3
Scott Aaronson,3 Timothy C. Ralph,2 Andrew G. White1,2

Quantum computers are unnecessary for exponentially efficient computation or simulation if the
Extended Church-Turing thesis is correct. The thesis would be strongly contradicted by physical
devices that efficiently perform tasks believed to be intractable for classical computers. Such a task
is boson sampling: sampling the output distributions of n bosons scattered by some passive, linear
unitary process. We tested the central premise of boson sampling, experimentally verifying that
three-photon scattering amplitudes are given by the permanents of submatrices generated from a
unitary describing a six-mode integrated optical circuit. We find the protocol to be robust, working
even with the unavoidable effects of photon loss, non-ideal sources, and imperfect detection.
Scaling this to large numbers of photons should be a much simpler task than building a universal
quantum computer.

Amajor motivation for scalable quan-tum computing is Shor’s algorithm (1),which enables the efficient factoring oflarge composite numbers into their constituentprimes. The presumed difficulty of this task is thebasis of the majority of today’s public-key en-cryption schemes. It may be that scalable quan-tum computers are not realistic if, for example,quantum mechanics breaks down for large num-bers of qubits (2). If, however, quantum com-

puters are realistic physical devices, then theExtended Church-Turing (ECT) thesis—thatany function efficiently computed on a realisticphysical device can be efficiently computedon a probabilistic Turing machine—means thata classical efficient factoring algorithm exists.Such an algorithm, long sought after, wouldenable us to break public-key cryptosystemssuch as RSA. A third possibility is that the ECTthesis itself is wrong.

15 FEBRUARY 2013 VOL 339 SCIENCE www.sciencemag.org

794

REPORTS

Efficient experimental validation of photonic boson sampling against the uniform

distribution
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A boson sampling device is a specialised quan-

tum computer that solves a problem which is

strongly believed to be computationally hard

for classical computers [1]. Recently a num-

ber of small-scale implementations have been re-

ported [2–5], all based on multi-photon interfer-

ence in multimode interferometers. In the hard-

to-simulate regime, even validating the device’s

functioning may pose a problem [6]. In a recent

paper, Gogolin et al. [7] showed that so-called

symmetric algorithms would be unable to distin-

guish the experimental distribution from the triv-

ial, uniform distribution. Here we report new

boson sampling experiments on larger photonic

chips, and analyse the data using a scalable sta-

tistical test recently proposed by Aaronson and

Arkhipov [8]. We show the test successfully vali-

dates small experimental data samples against the

hypothesis that they are uniformly distributed.

We also show how to discriminate data arising

from either indistinguishable or distinguishable

photons. Our results pave the way towards larger

boson sampling experiments whose functioning,

despite being non-trivial to simulate, can be cer-

tified against alternative hypotheses.

Large-scale quantum computers hold the promise of

efficiently solving problems which are believed to be in-

tractable for classical computers, such as integer factor-

ing [9]. We are, however, far from being able to exper-

imentally demonstrate a large-scale, universal quantum

computer [10]. This has motivated the recent study of

different classes of restricted quantum computers [11, 12],

which may provide a more feasible way of experimentally

establishing what has been called the quantum compu-

tational supremacy [13] over classical computers.

One example of these restricted quantum computers

are multi-mode interferometers designed to solve the

Boson Sampling problem [1], recently demonstrated in

small-scale photonic experiments [2–5]. The Boson Sam-

pling problem involves simulating the following quantum

experiment (see Fig. 1 a,b): input n bosons in different

modes of an m-mode linear interferometer (m > n) and

measure the distribution of bosons at the interferome-

ter’s output modes. If performed with indistinguishable

bosons, this experiment results in an output distribution

which is hard to sample, even approximately, on classical

computers [1] (under very mild computational complex-

ity assumptions). The input for the classical simulation

consists in the m × m unitary matrix U describing the

interferometer and the list of n input modes used. It is

desirable to choose U randomly, both to avoid regularities

that could simplify the classical simulation, and because

the main hardness-of-simulation proof of [1] holds only

for uniformly sampled unitaries. These recent theoretical

and experimental results motivated further investigations

on error tolerances [14, 15], as well as additional analy-

ses of optical implementations [16, 17]. Very recently,

there appeared a proposal to implement Boson Sampling

computers using trapped ions [18].

It has been suggested recently, however, that due to

their very complexity, large boson sampling experiments

could not possibly be validated, i.e. their proper func-

tioning could not be ascertained. Gogolin et al. showed

in [7] that so-called symmetric algorithms fail to distin-

guish the distribution of experimental data from the triv-

ial, uniform distribution. Intuitively, it seems hard to use

an experimental data set of polynomial size (in n) to dis-

tinguish two distributions over a sample space which is

exponentially large. This criticism put in question the

notion that larger boson sampling experiments could be

shown to decisively outperform classical computers.

This criticism of Boson Sampling has been recently re-

futed by Aaronson and Arkhipov [8], who argued that

it was unreasonable to restrict the statistical analysis

to symmetric algorithms only. Moreover, Aaronson and

Arkhipov showed that it is indeed possible to discrim-

inate experimental data against the uniform distribu-

tion by taking advantage of the input data of the boson

sampling problem (the unitary U and the input state).

They proposed a scalable validation test which, for large
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Photonic BosonSampling computers[1] have inspired significant interest[2–5] because they have

the potential to solve computationally hard problems efficiently using only a few–dozen indistinguish-

able photons. However, their ability to outperform classical computers is currently limited by their

tight error tolerance[6, 7]. Whereas practical BosonSampling computation depends on the quality

of the apparatus it is the photons distinguishability which is the fundamentally limiting source of

error. Here we develop a method describing the transition probabilities of photons with arbitrary

distinguishability through any linear–optical network. We test this experimentally by tuning the

temporal delay of the input–photons. Our approach provides tighter estimates for the underlying

BosonSampling distribution by relating the output to the transition matrix immanants[8], enabling

the main source of errors to be quantified. This is essential for experimentally realizable imple-

mentations. Our method may enable generalized BosonSampling computation through the use of

immanants and not just permanents.

I. INTRODUCTION

BosonSampling processes n identical simultaneous

bosons, e.g. photons, through a randomly chosen

passive linear network and yields an output distribu-

tion relying on non–classical interference[9]. Such sam-

plings cannot be efficiently simulated on conventional

computers, due to two reasonable conjectures: the

Permanent–of–Gaussians conjecture and the Permanent

Anti–Concentration Conjecture. Furthermore the exis-

tence of a classical polynomial-time randomized algo-

rithm would imply a major collapse of the computational

complexity polynomial hierarchy.

The improbability of such a collapse indicates instead

that efficient approximate experimental BosonSampling

would falsify the extended Church–Turing thesis. This

thesis states that problems efficiently solvable by phys-

ical devices are also solvable efficiently by a probabilis-

tic, but non–quantum, Turing machine. Consequently

efficiently scalable experimental BosonSampling would

present strong evidence that quantum computing is supe-

rior to classical computing based on probabilistic Turing

machines.

The importance of experimentally testing the su-

periority of quantum computing over classical com-

puting has been the impetus of several impressive

photon interferometry experiments using integrated[3–

5] and fiber–based systems[2]. These experimen-

tal benchmarks of optical BosonSampling stimulated

discussions[10, 11] whether BosonSampling output dis-

tributions can be discriminated from uniform distribu-

tions in the large photon–number regime. Recent exper-

imental comparisons[12, 13] of output distributions orig-

inating from classical and quantum multi–photon inter-

ference strongly indicate that output distributions from

BosonSampling computers are not uniform. However, for

more accurate studies the influence of errors, which is still

under investigation[14–16], needs to be assessed.

Aaronson and Arkhipov, in their seminal theoretical in-

troduction of the BosonSampling problem and its poten-

tial implementation, presciently identified five “obvious”

errors that have to be considered in experimentally real-

izing BosonSampling. These errors are: imperfect prepa-

ration of the n–photon Fock–state, inaccurate description

of the interferometer, photon losses, imperfect detectors

and non–simultaneity of photon arrival times. Photon

losses and imperfect detection can be ameliorated for

demonstrations of principle by post–selection techniques,

and inaccuracy of the description of the transition matrix

can be minimized by stabilisation and process tomogra-

phy.
Consequently imperfect preparation of photons and non–

simultaneity are the most insidious of the five problems

and need careful study. State of the art multi–photon

sources face intrinsic challenges in terms of their pho-

tons’ distinguishability and well–defined photon number

states, both affecting crucially the performance of Boson-

Sampling computers. Photon–number–resolving detec-

tors with near unit detection efficiency[17–19] provide

the quantum technology for heralding precise photon–

number input states[20], rendering one source of imper-

fection rather unlikely in the near future. In contrast

the achievement of indistinguishable photons is still ex-

perimentally demanding by requiring precise control of

various parameters such as spectral–, temporal–, spatial–

and polarization properties[21]. In the classical case of all

photons being distinguishable the resulting output distri-

bution of a sampling–computer can always be efficiently

calculated on a conventional computer.

In this work we manipulate the distinguishability of
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The problem of certification

How do you know the device works?
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Is %p ≈ %t?
Number of preparations?
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Results

Certification test for n initial photons in m modes
1 Choose your target state %t, fix a threshold fidelity FT , failure

probability α, and an estimators error ε ≤ (1− FT )/2.

2 Request N preparations.

3 Estimate correlators: 2m single mode and O(m (4m2 + 1)n) multi
mode (needs only

(
m
n

)
2n+1 single mode homodyne settings)

4 Estimate fidelity and if F ∗ < FT + ε reject, otherwise accept.
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Results

Certification test for n initial photons in m modes
1 Choose your target state %t, fix a threshold fidelity FT , failure

probability α, and an estimators error ε ≤ (1− FT )/2.

2 Request N preparations.

3 Estimate correlators: 2m single mode and O(m (4m2 + 1)n) multi
mode (needs only

(
m
n

)
2n+1 single mode homodyne settings)

4 Estimate fidelity and if F ∗ < FT + ε reject, otherwise accept.

postselection:

Achieve certification for N ∈ O

(
m4(poly(m)n)n

P 2 ε2 log(
1

1−α )

)
.
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Conclusions

In the Gaussian setting efficient (poly(m) effort) and robust.

In the linear optics setting still robust and efficient in m but not in n.

For explicit bounds (number of preparations, size of acceptance
region, . . . ) and all the fine print (definition of robust certification,
post selection, . . . ) see [arXiv:1407.4817].

Thank you for your attention!
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