Constructing absolutely maximally entangled states and optimal quantum error correcting codes

Zahra Raissi ${ }^{1,2}$, Christian Gogolin ${ }^{1}$, Arnau Riera ${ }^{1}$, Antonio Acín ${ }^{1,3}$
${ }^{1}$ ICFO - The Institute of Photonic Sciences
${ }^{2}$ Sharif University of Technology Tehran
${ }^{3}$ ICREA-Institució Catalana de Recerca i Estudis Avançats

$$
\begin{gathered}
\text { arXiv:1611.???? } \\
\langle\Psi| \text { QIS } 2016 \text { Barcelona } \\
\text { 2016-10-19 }
\end{gathered}
$$

What are AME states?

What are AME states?

What are AME states?

What are AME states?

AME states
A state of n particles is AME if for all $S \subset\{1, \ldots, n\}$

$$
|S| \leq\lfloor n / 2\rfloor \Longrightarrow \operatorname{Tr}_{S^{c}}|\psi\rangle\langle\psi| \propto \mathbb{1} .
$$

Content of this talk

[1] D. Goyeneche, D. Alsina, J. I. Latorre, A. Riera, and K. Życzkowski, Phys. Rev. A, 92 (3 2015), 032316
[2] W. Helwig and W. Cui, (2013), URL: https://arxiv.org/abs/1306.2536

Why are AME states interesting?

- Natural generalization of EPR and GHZ states

[^0]
Why are AME states interesting?

- Natural generalization of EPR and GHZ states
- Resource for multipartite teleportation and quantum secret sharing [3]

[^1]
Why are AME states interesting?

- Natural generalization of EPR and GHZ states
- Resource for multipartite teleportation and quantum secret sharing

■ Holographic models implementing the Ads/Cft correspondence [4]

[^2]
Why are AME states interesting?

- Natural generalization of EPR and GHZ states
- Resource for multipartite teleportation and quantum secret sharing

■ Holographic models implementing the Ads/Cft correspondence [4]

■ Still fundamental questions open. Existence (qubits): $n=2,3,4,5,6,7, \not, \not, \not, \ldots[5,6]$

[^3]
Why are AME states interesting?

- Natural generalization of EPR and GHZ states
- Resource for multipartite teleportation and quantum secret sharing

■ Holographic models implementing the Ads/Cft correspondence [4]

■ Still fundamental questions open. Existence (qubits): $n=2,3,4,5,6,7, \not, \not, \not, \ldots[5,6]$

[^4]
Classical error correcting codes

Message

0

1

Classical error correcting codes

Message Encoding

$0 \longrightarrow 000$
$1 \longrightarrow 111$

Classical error correcting codes

Message Encoding Error

Classical error correcting codes

Message Encoding Error Correction

Classical error correcting codes

Message Encoding Error Correction

$$
\left[n=3, k=1, d_{H}=3\right]_{q=2}
$$

Classical error correcting codes

Message Encoding Error Correction

Classical error correcting codes

Message Encoding Error Correction

Classical error correcting codes

Message Encoding Error Correction

Classical error correcting codes

Message Encoding Error Correction

$$
\left\{\begin{array}{c}
0 \longrightarrow 000 \rightleftharpoons 010 \\
001 \\
000 \\
011 \\
1 \longrightarrow 111 \longrightarrow 110
\end{array}\right\} \longrightarrow 000
$$

Maximal distance separable (MDS) codes

Is this optimal?

$$
\left[n=3, k=1, d_{H}=3\right]_{q=2}
$$

Maximal distance separable (MDS) codes

Is this optimal?

$$
\left[n=3, k=1, d_{H}=3\right]_{q=2}
$$

Yes!

Singleton bound [7]

$$
d_{H} \leq n-k+1
$$

[^5]
Constructing linear MDS codes

Message Generator matrix Code word

Constructing linear MDS codes

Message Generator matrix Code word
This only makes sense if you can take linear combinations of messages and code words!

Yes. Right. Solution: Finite fields
Integers modulo q for q prime are a finite field.

Constructing linear MDS codes

G Has standard form (by taking linear combinations of code words)

$$
G_{k \times n}=\left[\mathbb{1}_{k} \mid A\right]
$$

Constructing linear MDS codes

G Has standard form (by taking linear combinations of code words)

$$
G_{k \times n}=\left[\mathbb{1}_{k} \mid A\right]
$$

■ Maximal Hamming distance from all zero code word: $n-k+1$ \Rightarrow Code is MDS only if all elements of A are non-zero

Constructing linear MDS codes

G Has standard form (by taking linear combinations of code words)

$$
G_{k \times n}=\left[\mathbb{1}_{k} \mid A\right]
$$

- Maximal Hamming distance from all zero code word: $n-k+1$ \Rightarrow Code is MDS only if all elements of A are non-zero

■ Smallest Hamming dist. given by smallest dist. to all zero code word \Rightarrow Code is MDS iff any subset of k columns of $G_{k \times n}$ is linearly independent \Longleftrightarrow All square sub-matrices of A are non-singular

Constructing linear MDS codes with Singleton arrays

For γ first primitive element of finite field define the Singleton array $[8,9]$:

$$
S_{q}:=\begin{array}{ccccccc}
1 & 1 & 1 & \ldots & 1 & 1 & 1 \\
1 & a_{1} & a_{2} & \ldots & a_{q-3} & a_{q-2} & \\
1 & a_{2} & a_{3} & \ldots & a_{q-2} & & \\
\vdots & \vdots & \vdots & . . & & & \\
1 & a_{q-3} & a_{q-2} & & & & \\
1 & a_{q-2} & & & & & w \\
1 & & & & & & w
\end{array}
$$

All square sub-matrices of S_{q} are non-singular!

[^6]
Constructing linear MDS codes with Singleton arrays

For γ first primitive element of finite field define the Singleton array $[8,9]$:

with $a_{i}:=1 /\left(1-\gamma^{i}\right)$

All square sub-matrices of S_{q} are non-singular!

[^7]
Constructing linear MDS codes with Singleton arrays

For γ first primitive element of finite field define the Singleton array $[8,9]$:

with $a_{i}:=1 /\left(1-\gamma^{i}\right)$

All square sub-matrices of S_{q} are non-singular!

[^8]
Constructing linear MDS codes with Singleton arrays

For γ first primitive element of finite field define the Singleton array $[8,9]$:

$$
A=\begin{array}{ccccc}
\begin{array}{cccc}
1 & 1 & 1 & \ldots \\
1 & a_{1} & a_{2} & \ldots \\
1 & a_{2} & a_{3} & \ldots \\
\vdots & \vdots & \vdots & . . \\
S_{q}:= & \begin{array}{c}
1 \\
a_{q-3}
\end{array} & \begin{array}{c}
1 \\
a_{q-2} \\
a_{q-2}
\end{array} & \\
\begin{array}{l}
1 \\
a_{q-3} \\
1
\end{array} a_{q-2} & a_{q-2} & & \\
& & \\
\text { with } a_{i}:=1 /\left(1-\gamma^{i}\right)
\end{array}
\end{array}
$$

All square sub-matrices of S_{q} are non-singular!

[^9]
Minimal support AME states from MDS codes

- Take an MDS code with $k=\lfloor n / 2\rfloor$

Minimal support AME states from MDS codes

- Take an MDS code with $k=\lfloor n / 2\rfloor$

■ Smallest Hamming distance between any two code words $d_{H}=n-k+1=\lceil n / 2\rceil+1$

Minimal support AME states from MDS codes

- Take an MDS code with $k=\lfloor n / 2\rfloor$

■ Smallest Hamming distance between any two code words $d_{H}=n-k+1=\lceil n / 2\rceil+1$
■ Consider $\vec{v}, \vec{w} \in[q]^{\lfloor n / 2\rfloor}$, then the product states

$$
\begin{array}{ll}
& \left|\vec{v} G_{\lfloor n / 2\rfloor \times n}\right\rangle \\
\text { and } & \left|\vec{w} G_{\lfloor n / 2\rfloor \times n}\right\rangle
\end{array}
$$

are orthogonal on all subsystems of size up to $\lceil n / 2\rceil+1$.

Minimal support AME states from MDS codes

- Take an MDS code with $k=\lfloor n / 2\rfloor$

■ Smallest Hamming distance between any two code words $d_{H}=n-k+1=\lceil n / 2\rceil+1$
■ Consider $\vec{v}, \vec{w} \in[q]^{\lfloor n / 2\rfloor}$, then the product states

$$
\begin{array}{ll}
& \left|\vec{v} G_{\lfloor n / 2\rfloor \times n}\right\rangle \\
\text { and } \quad\left|\vec{w} G_{\lfloor n / 2\rfloor \times n}\right\rangle
\end{array}
$$

are orthogonal on all subsystems of size up to $\lceil n / 2\rceil+1$.
■ Hence, we have an AME state!

$$
\langle\mathrm{QIS} \mid \Psi\rangle=\sum_{\vec{v} \in[q]\lfloor n / 2\rfloor}\left|\vec{v} G_{k \times n}\right\rangle
$$

Minimal support AME states from MDS codes

- Take an MDS code with $k=\lfloor n / 2\rfloor$
- Smallest Hamming distance between any two code words $d_{H}=n-k+1=\lceil n / 2\rceil+1$
■ Consider $\vec{v}, \vec{w} \in[q]^{\lfloor n / 2\rfloor}$, then the product states

$$
\begin{array}{ll}
& \left|\vec{v} G_{\lfloor n / 2\rfloor \times n}\right\rangle \\
\text { and } \quad\left|\vec{w} G_{\lfloor n / 2\rfloor \times n}\right\rangle
\end{array}
$$

are orthogonal on all subsystems of size up to $\lceil n / 2\rceil+1$.
■ Hence, we have an AME state!

$$
|\Psi\rangle=\sum_{\vec{v} \in[q]\lfloor n / 2\rfloor}\left|\vec{v} G_{k \times n}\right\rangle
$$

An example

Generator matrix of a $[6,3,4]_{5}$ MDS code:

$$
G_{3 \times 6}=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 3 & 4
\end{array}\right]
$$

An example

Generator matrix of a $[6,3,4]_{5}$ MDS code:

$$
G_{3 \times 6}=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 3 & 4
\end{array}\right]
$$

Yields minimal support AME state for $n=6, q=5$:

$$
|\Psi\rangle=\sum_{\vec{v} \in G F(5)^{3}}|\vec{v} G\rangle=\sum_{i, j, l=0}^{4}|i, j, l, i+j+l, i+2 j+3 l, i+3 j+4 l\rangle
$$

(All additions and multiplications modulo q.)
Can construct such states for all $n \leq q-1$ and q prime.

MDS codes from minimal support AME states

MDS code

Minimal support AME state

MDS codes from minimal support AME states

MDS code

Minimal support AME state

Quantum error correcting codes

$$
[[n, k, d]]_{q}
$$

Quantum error correcting codes

$$
[[n, k, d]]_{q}
$$

Message
 Encoding

unitary

$$
|\psi\rangle \in\left(\mathbb{C}^{q}\right)^{\otimes k} \longrightarrow|\varphi\rangle \in \mathcal{C} \subset\left(\mathbb{C}^{q}\right)^{\otimes n}
$$

[^10]
Quantum error correcting codes

$$
[[n, k, d]]_{q}
$$

$$
\begin{gathered}
\text { Message } \\
\text { unitary } \\
|\psi\rangle \in\left(\mathbb{C}^{q}\right)^{\otimes k} \longrightarrow|\varphi\rangle \in \mathcal{C} \subset\left(\mathbb{C}^{q}\right)^{\otimes n} \longrightarrow|\tilde{\varphi}\rangle \notin \mathcal{C} \\
t \text { systems affected }
\end{gathered}
$$

[^11]
Quantum error correcting codes

$$
[[n, k, d]]_{q}
$$

$$
\begin{array}{cc}
\text { Message } & \text { Encoding } \\
\text { unitary } & \text { Error } \\
|\psi\rangle \in\left(\mathbb{C}^{q}\right)^{\otimes k} \longrightarrow|\varphi\rangle \in \mathcal{C} \subset\left(\mathbb{C}^{q}\right)^{\otimes n} \longrightarrow|\tilde{\varphi}\rangle \notin \mathcal{C} \longrightarrow|\varphi\rangle \in \mathcal{C} \\
t \text { systems affected }
\end{array}
$$

[^12]
Quantum error correcting codes

$$
[[n, k, d]]_{q}
$$

$$
\begin{array}{cc}
\text { Message } & \text { Encoding } \\
\text { unitary } & \text { Error } \\
\text { measuring stabilizers } \\
|\psi\rangle \in\left(\mathbb{C}^{q}\right)^{\otimes k} \longrightarrow|\varphi\rangle \in \mathcal{C} \subset\left(\mathbb{C}^{q}\right)^{\otimes n} \longrightarrow|\tilde{\varphi}\rangle \notin \mathcal{C} \longrightarrow|\varphi\rangle \in \mathcal{C} \\
t \text { systems affected }
\end{array}
$$

Quantum singleton bound [10-12]

$$
2 t+1=: d \leq \frac{n-k}{2}+1
$$

[^13]
QECCs from minimal support AME states

Conjecture

For every prime $q \geq n-1$ and n a multiple of 4 there exists a $[[n, 1, n / 2-1]]_{q}$ QECC, whose code space \mathcal{C} is spanned by AME states and we can construct it and its stabilizers explicitly for any n.

QECCs from minimal support AME states

Conjecture

For every prime $q \geq n-1$ and n a multiple of 4 there exists a $[[n, 1, n / 2-1]]_{q}$ QECC, whose code space \mathcal{C} is spanned by AME states and we can construct it and its stabilizers explicitly for any n.

QECCs from minimal support AME states

Conjecture

For every prime $q \geq n-1$ and n a multiple of 4 there exists a $[[n, 1, n / 2-1]]_{q}$ QECC, whose code space \mathcal{C} is spanned by AME states and we can construct it and its stabilizers explicitly for any n.

QECCs from minimal support AME states

Conjecture

For every prime $q \geq n-1$ and n a multiple of 4 there exists a $[[n, 1, n / 2-1]]_{q}$ QECC, whose code space \mathcal{C} is spanned by AME states and we can construct it and its stabilizers explicitly for any n.

We are ε-close to convincing ourselves that our proof strategy works. . .

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

"perfect tensor"

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

$\operatorname{Tr}\left(M_{i}\right)=0$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

$\operatorname{Tr}\left(M_{i}\right)=0$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

$\operatorname{Tr}\left(M_{i}\right)=0$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

$\operatorname{Tr}\left(M_{i}\right)=0$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle
$$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

$\operatorname{Tr}\left(\tilde{M}_{5}\right) \operatorname{Tr}\left(\tilde{M}_{6,7,8} \mathcal{E}\right)=$

Some intuition

- Remember EPR state: $(U \otimes \mathbb{1})\left|\psi^{+}\right\rangle=\left(\mathbb{1} \otimes U^{\dagger}\right)\left|\psi^{+}\right\rangle$
- AME state:

$$
|\Psi\rangle=\sum_{j_{1} \ldots, j_{n}=1}^{q} c_{j_{1} \ldots, j_{n}}\left|j_{1} \ldots, j_{n}\right\rangle,
$$

$$
0=\operatorname{Tr}\left(\tilde{M}_{5}\right) \operatorname{Tr}\left(\tilde{M}_{6,7,8} \mathcal{E}\right)=
$$

Summary

〈 xuantum

the open journal for quantum science quantum-journal.org

relevance visibility

 open data λ o Uality social rigorous $\frac{\pi}{0}$ peer reviewed $\frac{\pi}{2}$ reproducible by researchers for researchers

correctness

 theory transparent experiment online broad community essence © ${ }_{0}$ publagogic original

$$
\text { non-profit } \xlongequal{9}
$$

References

Thank you for your attention!

[1]	D. Goyeneche, D. Alsina, J. I. Latorre, A. Riera, and K. Życzkowski, Phys. Rev. A, 92 (3 2015), 032316.	[7]	R. Singleton, IEEE Trans. Inf. Theor., 10.2 (2006), 116-118.
[2]	W. Helwig and W. Cui, (2013), URL: https://arxiv.org/abs/1306.2536.	[8]	R. M. Roth and G. Seroussi, IEEE Trans. Inf. Theor., 31.6 (1985), 826-830.
[3]	W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A, 86 (5 2012), 052335.	[9]	T. Maruta, Discrete Mathematics, 81.1 (1990), 33 -36 .
[4]	F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Journal of High Energy Physics, 2015.6 (2015), 149.	[10]	D. Gottesman, PhD thesis, Caltech, 1997, URL: https://arxiv.org/abs/quant-ph/9705052.
[5]	F. Huber, O. Gühne, and J. Siewert, (2016), URL: https://arxiv.org/abs/1608.06228.		$\text { 1997), } 900-911$
[6]	A. J. Scott, Phys. Rev. A, 69 (5 2004), 052330.	[12]	N. J. Cerf and R. Cleve, Phys. Rev. A, 56 (3 1997) 1721-1732.

Ask Lídia and me about 〈 रuantum (poster in hall)!

Funded by: the European Research Council (ERC AdG OSYRIS and CoG QITBOX), Axa Chair in Quantum Information Science, The John Templeton Foundation, Spanish MINECO (FOQUS FIS2013-46768 and Severo Ochoa Grant No. SEV-2015-0522), Fundació Privada Cellex, and Generalitat de Catalunya (Grant No. SGR 874 and 875). C. G. acknowledges support by MPQICFO, ICFOnest+ (FP7-PEOPLE-2013-COFUND), and co-funding by the European Union's Marie Skłodowska-Curie Individual Fellowships (IF-EF) programme under GA: 700140. A. R. is supported by the Beatriu de Pinós fellowship (BP-DGR 2013).

[^0]: [3] W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A, 86 (5 2012), 052335
 [4] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Journal of High Energy Physics, 2015.6 (2015), 149
 [5] F. Huber, O. Gühne, and J. Siewert, (2016), URL: https://arxiv.org/abs/1608.06228
 [6] A. J. Scott, Phys. Rev. A, 69 (5 2004), 052330

[^1]: [3] W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A, 86 (5 2012), 052335
 [4] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Journal of High Energy Physics, 2015.6 (2015), 149
 [5] F. Huber, O. Gühne, and J. Siewert, (2016), URL: https://arxiv.org/abs/1608.06228
 [6] A. J. Scott, Phys. Rev. A, 69 (5 2004), 052330

[^2]: [3] W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A, 86 (5 2012), 052335
 [4] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Journal of High Energy Physics, 2015.6 (2015), 149
 [5] F. Huber, O. Gühne, and J. Siewert, (2016), URL: https://arxiv.org/abs/1608.06228
 [6] A. J. Scott, Phys. Rev. A, 69 (5 2004), 052330

[^3]: [3] W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A, 86 (5 2012), 052335
 [4] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Journal of High Energy Physics, 2015.6 (2015), 149
 [5] F. Huber, O. Gühne, and J. Siewert, (2016), URL: https://arxiv.org/abs/1608.06228
 [6] A. J. Scott, Phys. Rev. A, 69 (5 2004), 052330

[^4]: [3] W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A, 86 (5 2012), 052335
 [4] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Journal of High Energy Physics, 2015.6 (2015), 149
 [5] F. Huber, O. Gühne, and J. Siewert, (2016), URL: https://arxiv.org/abs/1608.06228
 [6] A. J. Scott, Phys. Rev. A, 69 (5 2004), 052330

[^5]: [7] R. Singleton, IEEE Trans. Inf. Theor., 10.2 (2006), 116-118

[^6]: [8] R. M. Roth and G. Seroussi, IEEE Trans. Inf. Theor., 31.6 (1985), 826-830
 [9] T. Maruta, Discrete Mathematics, 81.1 (1990), $33-36$

[^7]: [8] R. M. Roth and G. Seroussi, IEEE Trans. Inf. Theor., 31.6 (1985), 826-830
 [9] T. Maruta, Discrete Mathematics, 81.1 (1990), $33-36$

[^8]: [8] R. M. Roth and G. Seroussi, IEEE Trans. Inf. Theor., 31.6 (1985), 826-830
 [9] T. Maruta, Discrete Mathematics, 81.1 (1990), $33-36$

[^9]: [8] R. M. Roth and G. Seroussi, IEEE Trans. Inf. Theor., 31.6 (1985), 826-830
 [9] T. Maruta, Discrete Mathematics, 81.1 (1990), $33-36$

[^10]: [10] D. Gottesman, PhD thesis, Caltech, 1997, URL: https://arxiv.org/abs/quant-ph/9705052
 [11] E. Knill and R. Laflamme, Phys. Rev. A, 55 (2 1997), 900-911
 [12] N. J. Cerf and R. Cleve, Phys. Rev. A, 56 (3 1997), 1721-1732

[^11]: [10] D. Gottesman, PhD thesis, Caltech, 1997, URL: https://arxiv.org/abs/quant-ph/9705052
 [11] E. Knill and R. Laflamme, Phys. Rev. A, 55 (2 1997), 900-911
 [12] N. J. Cerf and R. Cleve, Phys. Rev. A, 56 (3 1997), 1721-1732

[^12]: [10] D. Gottesman, PhD thesis, Caltech, 1997, URL: https://arxiv.org/abs/quant-ph/9705052
 [11] E. Knill and R. Laflamme, Phys. Rev. A, 55 (2 1997), 900-911
 [12] N. J. Cerf and R. Cleve, Phys. Rev. A, 56 (3 1997), 1721-1732

[^13]: [10] D. Gottesman, PhD thesis, Caltech, 1997, URL: https://arxiv.org/abs/quant-ph/9705052
 [11] E. Knill and R. Laflamme, Phys. Rev. A, 55 (2 1997), 900-911
 [12] N. J. Cerf and R. Cleve, Phys. Rev. A, 56 (3 1997), 1721-1732

