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Old questions and new contributions

How do quantum mechanics and
statistical mechanics go together?
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Many-Body Quantum Dynamics in Closed Systems

|ψt〉 = e− i H t |ψ0〉

At = Tr[A|ψt〉〈ψt|]
ψSt = TrB[|ψt〉〈ψt|]

1⊗H BH S ⊗1

“Bath”System

H SB+ +

A

H =

Equilibration:

t ? t
strong: equilibrated between t1 and t2 [1]

weak: equilibrated for most times [2]

Thermalization:

T ? T ψSt ≈ ρGibbs ∝ e−βH S

[1] M. Cramer, C. Dawson, J. Eisert, and T. Osborne, PRL 100 (2008) 030602
[2] P. Reimann, PRL 101 (2008) 190403
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Equilibration and a maximum entropy principle
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Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ψ0 =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Equilibration and a maximum entropy principle 5 / 19

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ψ0 =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Equilibration and a maximum entropy principle 5 / 19

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ψ0 =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Equilibration and a maximum entropy principle 5 / 19

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ψt =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Equilibration and a maximum entropy principle 5 / 19

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ω =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Equilibration and a maximum entropy principle 5 / 19

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ω =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Equilibration and a maximum entropy principle 5 / 19

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ω =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Equilibration and a maximum entropy principle 5 / 19

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If Tr[Aψt] equilibrates, it equilibrates towards its time average

Tr[Aψt] = Tr[Aψt] = Tr[Aω],

where ω =
∑
k

πkψ0πk

(with πk the energy eigen projectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Time averaging

ω =

ψ0 → ω is a pinching ⇒ ω maximizes entropy.

Interesting open questions:

Do we really need all (exponentially many) conserved
quantities?

If not, then which?

Does this depend on integrability of the model?

What is the relation to the GGE?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401



Absence of thermalization | Thermalization and integrability 6 / 19

Thermalization and integrability
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Thermalization is a complicated process

Thermalization implies:

1 Equilibration [2, 4, 5]

2 Subsystem initial state independence [3]

3 Weak bath state dependence [6]

4 Diagonal form of the subsystem equilibrium state [7]

5 Gibbs state e−β H [5, 6]

[2] P. Reimann, PRL 101 (2008) 190403
[4] N. Linden, S. Popescu, A. J. Short, and A. Winter, PRE 79 (2009) no. 6, 061103
[5] J. Gemmer, M. Michel, and G. Mahler, Springer (2009)
[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
[7] C. Gogolin, PRE 81 (2010) no. 5, 051127
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Thermalization and quantum integrability

There is a common belief in the literature [8, 9, 10, 11, 12] . . .

Non-integrable =⇒ Thermalization
Integrable =⇒ No thermalization

. . . but there are problems.

[8] C. Kollath et. al PRL 98, (2007) 180601
[9] S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98 (2007) 210405
[10] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008) 854
[11] M. C. Banuls, J. I. Cirac, and M. B. Hastings, arXiv:1007.3957
[12] M. Rigol, PRL 103, (2009) 100403
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Notions of (non-)integrability

A system is with n degrees of freedom is integrable if:

There exist n (local) conserved mutually commuting linearly
independent operators.

There exist n (local) conserved mutually commuting algebraically
independent operators.

The system is integrable by the Bethe ansatz.

The system exhibits nondiffractive scattering.

The quantum many-body system is exactly solvable in any way.

. . .

And non-integrable otherwise?

Lack of imagination?
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Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a
maximal set of n independent Poisson commuting constants of motion
and is called non-integrable otherwise [13].

Classical:

integrability ⇒ systematic solvable
and evolution on a n-torus

qualitative question

thermalization
?⇒ non-integrability

thermalization ��⇐ non-integrability

Quantum:

always systematic solvable
and evolution on a d-torus

quantitative question?

thermalization
?⇐ non-integrability

[13] V. I. Arnold, Mathematical Methods Of Classical Mechanics (1989)
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Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]):

Too little (geometric) entanglement in the energy
eigenbasis prevents initial state independence.

This can happen even in non-integrable systems.

S B

|ψ1〉

|ψ2〉
t

S B

The model:

Spin-1/2 XYZ chain with random coupling and on-site field.

H =

n∑
i=1

hi σ
Z
i +

n−1∑
i=1

~bi ·~σNN
i

Interesting open questions:

What is the relation to Anderson localization?

Can this also happen in translation invariant systems?

[3] C. Gogolin, M. P. Mueller, and J. Eisert, PRL 106 (2011) 040401
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Two ways to prove thermalization

Thermalization

|Ek〉 {〈Ek|ψ0|Ek〉}

ETH Our result

Assumptions about:
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Structure of the argument

+

Classical level counting à
la Goldstein [14] with
no interaction
H 0 = H S ⊗1+1⊗H B

Perturbation theory for
realistic weak coupling [6]
‖H SB ‖∞ � kB T

Typicality
arguments

Kinematic

Equilibration
results

Dynamic

[14] S. Goldstein, PRL 96 (2006) no. 5, 050403
[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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The result

‖H SB ‖∞ � gaps(H 0)
‖H SB ‖∞ � kBT � ∆

E

〈Ek|ψ0|Ek〉

[ ]∆
E

ΩB
∆(E)

[ ]

E6=

=⇒ “Theorem” 2 (Theorem 2 in [6])

(Kinematic) Almost all pure states from a microcanonical subspace
[E,E + ∆] are locally close to a Gibbs state.

(Dynamic) All initial states ψu,0 locally equilibrate towards a Gibbs state,
even if they are initially far from equilibrium.

[6] A. Riera, C. Gogolin, and J. Eisert, 1102.2389
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