Absence of thermalization in non-integrable systems

Christian Gogolin, Arnau Riera, Markus Müller, and Jens Eisert

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin

Workshop “Many-Body Quantum Dynamics in Closed Systems”
Barcelona September 7-9 2011
Old questions and new contributions

How do quantum mechanics and statistical mechanics go together?
Many-Body Quantum Dynamics in Closed Systems

Absence of thermalization

\[\psi_t = e^{-iHt} \psi_0 \]

\[A_t = \text{Tr}[A|\psi_t\rangle\langle\psi_t|] \]

\[\psi_{\text{S}} = \text{Tr}[B|\psi_t\rangle\langle\psi_t|] \]

\[H_{\text{SB}} + H_S \otimes 1 + 1 \otimes H_B \]

Equilibration:
- strong: equilibrated between \(t_1 \) and \(t_2 \) \[1\]
- weak: equilibrated for most times \[2\]

Thermalization:

\[\psi_{\text{S}} \approx \rho_{\text{Gibbs}} \propto e^{-\beta H_S} \]

Many-Body Quantum Dynamics in Closed Systems

\[\psi_t = e^{-iHt}\psi_0 \]

A_t = Tr[A|\psi_t\rangle\langle\psi_t|]

\[\psi_S(t) = Tr[B|\psi_t\rangle\langle\psi_t|] \]

\[H_{SB} + H_S \otimes 1 + 1 \otimes H_B \]

Equilibration:

- strong: equilibrated between \(t_1 \) and \(t_2 \)
- weak: equilibrated for most times

Thermalization:

\[\psi_S(t) \approx \rho_{\text{Gibbs}} \propto e^{-\beta H_S} \]

Absence of thermalization

Setup and terminology

Many-Body Quantum Dynamics in Closed Systems

\[|\psi_t\rangle = e^{-i\mathcal{H} t} |\psi_0\rangle \]

\[A_t = \text{Tr}[A|\psi_t\rangle\langle\psi_t|] \]

\[\psi^S_t = \text{Tr}_B[|\psi_t\rangle\langle\psi_t|] \]

\[\mathcal{H} = \mathcal{H}_S \otimes 1 + \mathcal{H}_{SB} + 1 \otimes \mathcal{H}_B \]

Absence of thermalization

Setup and terminology

Many-Body Quantum Dynamics in Closed Systems

\[|\psi_t\rangle = e^{-i\mathcal{H}t} |\psi_0\rangle \]

\[A_t = \text{Tr}[A|\psi_t\rangle\langle \psi_t|] \]

\[\psi_S^t = \text{Tr}_B[|\psi_t\rangle\langle \psi_t|] \]

- **Equilibration:**
 - **strong:** equilibrated between \(t_1 \) and \(t_2 \) [1]
 - **weak:** equilibrated for most times [2]

\[\mathcal{H} = \mathcal{H}_S \otimes 1 + \mathcal{H}_{SB} + 1 \otimes \mathcal{H}_B \]

Many-Body Quantum Dynamics in Closed Systems

\[|\psi_t \rangle = e^{-i\mathcal{H}t} |\psi_0 \rangle \]

\[A_t = \text{Tr}[A|\psi_t\rangle\langle\psi_t|] \]

\[\psi^S_t = \text{Tr}_B[|\psi_t\rangle\langle\psi_t|] \]

- **Equilibration:**

 [Diagram showing equilibration with a graph indicating a transition over time]

 - strong: equilibrated between \(t_1 \) and \(t_2 \) [1]
 - weak: equilibrated for most times [2]

- **Thermalization:**

 [Diagram showing thermalization with a graph indicating temperature change]

 \[\psi^S_t \approx \rho_{\text{Gibbs}} \propto e^{-\beta \mathcal{H}_S} \]

Equilibration and a maximum entropy principle
Theorem 1 (Maximum entropy principle [3])

If $\text{Tr}[A \psi_t]$ equilibrates, it equilibrates towards its time average

$$\overline{\text{Tr}[A \psi_t]} = \text{Tr}[A \overline{\psi_t}] = \text{Tr}[A \omega],$$

where $\omega = \sum_k \pi_k \psi_0 \pi_k$

(with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

Theorem 1 (Maximum entropy principle [3])

If \(\text{Tr}[A \psi_t] \) equilibrates, it equilibrates towards its time average
\[
\text{Tr}[A \psi_t] = \text{Tr}[A \omega] = \text{Tr}[A \psi_0],
\]
where \(\omega = \sum \pi_k \psi_0 \pi_k \) (with \(\pi_k \) the energy eigenprojectors) is the dephased state that
maximizes the von Neumann entropy, given all conserved quantities.

\[\Rightarrow \]

Maximum entropy principle from pure quantum dynamics.
Has nothing to do with (non)-integrability.

Time averaging

\[\psi_0 = \]

Interesting open questions:
Do we really need all (exponentially many) conserved
quantities?
If not, then which?
Does this depend on integrability of the model?
What is the relation to the GGE?

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If $\text{Tr}[A \psi_t]$ equilibrates, it equilibrates towards its time average

$$\text{Tr}[A \psi_t] = \text{Tr}[A \psi_t] = \text{Tr}[A \omega],$$

where $\omega = \sum_k \pi_k \psi_0 \pi_k$ (with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

\Rightarrow Maximum entropy principle from pure quantum dynamics. Has nothing to do with (non)-integrability.

Time averaging

$\psi_0 = \omega$ is a pinching $\Rightarrow \omega$ maximizes entropy.

Interesting open questions:
Do we really need all (exponentially many) conserved quantities?
If not, then which?
Does this depend on integrability of the model?
What is the relation to the GGE?

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If $\text{Tr}[A \psi_t]$ equilibrates, it equilibrates towards its time average

$$\text{Tr}[A \psi_t] = \text{Tr}[A \omega_t] = \text{Tr}[A \omega_0],$$

where $\omega = \sum_k \pi_k \psi_0 \pi_k$ (with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics.
Has nothing to do with (non)-integrability.

Time averaging

$\psi_t = \psi_0 \rightarrow \omega$ is a pinching $\Rightarrow \omega$ maximizes entropy.

Interesting open questions:
Do we really need all (exponentially many) conserved quantities?
If not, then which?
Does this depend on integrability of the model?
What is the relation to the GGE?

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If $\text{Tr}[A \psi_t]$ equilibrates, it equilibrates towards its time average

$$\text{Tr}[A \psi_t] = \text{Tr}[A \psi_t] = \text{Tr}[A \omega],$$

where $\omega = \sum_k \pi_k \psi_0 \pi_k$ (with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

⇒ Maximum entropy principle from pure quantum dynamics. Has nothing to do with (non)-integrability.

(With π_k the energy eigen projectors, it maximizes entropy.)

Interesting open questions:
- Do we really need all (exponentially many) conserved quantities?
- If not, then which?
- Does this depend on integrability of the model?
- What is the relation to the GGE?

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If $\text{Tr}[A \psi_t]$ equilibrates, it equilibrates towards its time average $\text{Tr}[A \psi_t] = \text{Tr}[A \omega_t] = \text{Tr}[A \omega]$,

where $\omega = \sum_k \pi_k \psi_0 \pi_k$ (with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

\Rightarrow Maximum entropy principle from pure quantum dynamics. Has nothing to do with (non)-integrability.

Time averaging

$\psi_0 \rightarrow \omega$ is a pinching $\Rightarrow \omega$ maximizes entropy.

Maximum entropy principle

Theorem 1 (Maximum entropy principle [3])

If $\text{Tr}[A \psi_t]$ equilibrates, it equilibrates towards its time average

$$\text{Tr}[A \psi_t] = \text{Tr}[A \bar{\psi}_t] = \text{Tr}[A \omega],$$

where $\omega = \sum_k \pi_k \psi_0 \pi_k$

(with π_k the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

\Rightarrow Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Theorem 1 (Maximum entropy principle [3])

If \(\text{Tr}[A \psi_t] \) equilibrates, it equilibrates towards its time average

\[
\text{Tr}[A \psi_t] = \text{Tr}[A \psi_0] = \text{Tr}[A \omega],
\]

where \(\omega = \sum_k \pi_k \psi_0 \pi_k \) (with \(\pi_k \) the energy eigen projectors) is the dephased state that maximizes the von Neumann entropy, given all conserved quantities.

\[\Rightarrow\] Maximum entropy principle from pure quantum dynamics.

Has nothing to do with (non)-integrability.

Interesting open questions:
- Do we really need all (exponentially many) conserved quantities?
- If not, then which?
- Does this depend on integrability of the model?
- What is the relation to the GGE?

Thermalization and integrability
Thermalization is a complicated process

Thermalization implies:

1. Equilibration [2, 4, 5]
2. Subsystem initial state independence [3]
3. Weak bath state dependence [6]
4. Diagonal form of the subsystem equilibrium state [7]
5. Gibbs state $e^{-\beta H}$ [5, 6]

There is a common belief in the literature [8, 9, 10, 11, 12] …

\[
\begin{align*}
\text{Non-integrable} & \implies \text{Thermalization} \\
\text{Integrable} & \implies \text{No thermalization}
\end{align*}
\]

Thermalization and quantum integrability

There is a common belief in the literature [8, 9, 10, 11, 12] ...

Non-integrable \implies Thermalization
Integrable \implies No thermalization

... but there are problems.

Notions of (non-)integrability

A system is with n degrees of freedom is integrable if:

- There exist n (local) conserved mutually commuting linearly independent operators.
- There exist n (local) conserved mutually commuting algebraically independent operators.
- The system is integrable by the Bethe ansatz.
- The system exhibits nondiffractive scattering.
- The quantum many-body system is exactly solvable in any way.
- ...
Notions of (non-)integrability

A system is with \(n \) degrees of freedom is integrable if:

- There exist \(n \) (local) conserved mutually commuting linearly independent operators.
- There exist \(n \) (local) conserved mutually commuting algebraically independent operators.
- The system is integrable by the Bethe ansatz.
- The system exhibits nondiffractive scattering.
- The quantum many-body system is exactly solvable in any way.
- ...

And non-integrable otherwise?
Notions of (non-)integrability

A system is with n degrees of freedom is integrable if:

- There exist n (local) conserved mutually commuting linearly independent operators.
- There exist n (local) conserved mutually commuting algebraically independent operators.
- The system is integrable by the Bethe ansatz.
- The system exhibits nondiffractive scattering.
- The quantum many-body system is exactly solvable in any way.
- ...

And non-integrable otherwise?

Lack of imagination?
Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with n degrees of freedom is called **integrable** if it entails a maximal set of n independent Poisson commuting constants of motion and is called **non-integrable** otherwise [13].

Reminder on integrability in classical mechanics

Classical Liouville integrability
A system with \(n \) degrees of freedom is called **integrable** if it entails a maximal set of \(n \) independent Poisson commuting constants of motion and is called **non-integrable** otherwise [13].

Classical:

\(\text{integrability} \implies \text{systematic solvable}\)
and evolution on a \(n \)-torus

Quantum:

\(\text{always systematic solvable}\)
and evolution on a \(d \)-torus

Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with \(n \) degrees of freedom is called **integrable** if it entails a maximal set of \(n \) independent Poisson commuting constants of motion and is called **non-integrable** otherwise [13].

Classical:
- integrability \(\Rightarrow \) systematic solvable and evolution on a \(n \)-torus
- qualitative question

Quantum:
- always systematic solvable and evolution on a \(d \)-torus
- quantitative question?

Reminder on integrability in classical mechanics

Classical Liouville integrability

A system with n degrees of freedom is called integrable if it entails a maximal set of n independent Poisson commuting constants of motion and is called non-integrable otherwise [13].

Classical:
- integrability \Rightarrow systematic solvable and evolution on a n-torus
- qualitative question
- thermalization \Rightarrow non-integrability

Quantum:
- always systematic solvable and evolution on a d-torus
- quantitative question?
- thermalization \Leftrightarrow non-integrability

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

The model:

\[
H = \sum_{i=1}^{n} h_i \sigma_i^Z + \sum_{i=1}^{n-1} \vec{b}_i \cdot \vec{\sigma}_{NN}
\]

Interesting open questions:

- What is the relation to Anderson localization?
- Can this also happen in translation invariant systems?

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]): Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence. This can happen even in non-integrable systems.

\[|\psi_1\rangle, |\psi_2\rangle \]

The model:
Spin-1/2 XYZ chain with random coupling and on-site field.

\[
\mathcal{H} = \sum_{i=1}^{n} h_i \sigma_i^Z + \sum_{i=1}^{n-1} b_i \cdot \sigma_i^{NN}
\]

Interesting open questions:
What is the relation to Anderson localization?
Can this also happen in translation invariant systems?

Absence of thermalization in non integrable systems

The model:

Spin-1/2 XYZ chain with random coupling and on-site field.

\[\mathcal{H} = \sum_{i=1}^{n} h_i \sigma_i^Z + \sum_{i=1}^{n-1} \vec{b}_i \cdot \vec{\sigma}_i^{NN} \]

Interesting open questions:

- What is the relation to Anderson localization?
- Can this also happen in translation invariant systems?

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [3]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

Proving thermalization
Two ways to prove thermalization

\[\langle E_k | \psi_0 | E_k \rangle \]

Assumptions about:

ETH

Our result

\[|E_k\rangle \]
Two ways to prove thermalization

\[\langle E_k | \psi_0 | E_k \rangle \]

Assumptions about:

ETH

Our result

| \(E_k \rangle \]
Structure of the argument

Structure of the argument

Classical level counting à la Goldstein [14] with no interaction

\[\mathcal{H}_0 = \mathcal{H}_S \otimes 1 + 1 \otimes \mathcal{H}_B \]

Structure of the argument

Classical level counting à la Goldstein [14] with no interaction

\[H_0 = H_S \otimes 1 + 1 \otimes H_B \]

Perturbation theory for realistic weak coupling [6]

\[\| H_{SB} \|_\infty \ll k_B T \]

Structure of the argument

Classical level counting à la Goldstein [14] with no interaction
\(\mathcal{H}_0 = \mathcal{H}_S \otimes 1 + 1 \otimes \mathcal{H}_B \)

+

Perturbation theory for realistic weak coupling [6]
\(\| \mathcal{H}_{SB} \|_\infty \ll k_B T \)

Typicality arguments

Kinematic

Structure of the argument

Classical level counting à la Goldstein [14] with no interaction
\[\mathcal{H}_0 = \mathcal{H}_S \otimes 1 + 1 \otimes \mathcal{H}_B \]

+

Perturbation theory for realistic weak coupling [6]
\[\| \mathcal{H}_{SB} \|_\infty \ll k_B T \]

→ Typicality arguments

→ Kinematic

→ Equilibration results

→ Dynamic

Absence of thermalization

The result

\[\| \mathcal{H}_{SB} \|_\infty \gg \text{gaps}(\mathcal{H}_0) \]
\[\| \mathcal{H}_{SB} \|_\infty \ll k_B T \ll \Delta \]

\[\langle E_k | \psi_0 | E_k \rangle \]
\[\Omega^B_\Delta(E) \]

\[\Rightarrow \text{“Theorem” 2 (Theorem 2 in [6])} \]

(Kinematic) Almost all pure states from a microcanonical subspace \([E, E + \Delta]\) are locally close to a Gibbs state.

Absence of thermalization

The result

\[\left\| \mathcal{H}_{SB} \right\|_\infty \gg \text{gaps}(\mathcal{H}_0) \]
\[\left\| \mathcal{H}_{SB} \right\|_\infty \ll k_B T \ll \Delta \]

\[\langle E_k | \psi_0 | E_k \rangle \]
\[\Omega^B_\Delta (E) \]

\[E \]

\[E \]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]
The result

\[\left\| \mathcal{H}_{SB} \right\|_\infty \gg \text{gaps}(\mathcal{H}_0) \]
\[\left\| \mathcal{H}_{SB} \right\|_\infty \ll k_B T \ll \Delta \]

\[\langle E_k | \psi_0 | E_k \rangle \]
\[\Omega_B^\Delta (E) \]

\[\Delta E \]

\[\Omega_B^\Delta (E) \]

\[\Leftrightarrow \text{“Theorem” 2 (Theorem 2 in [6])} \]

(Kinematic) Almost all pure states from a microcanonical subspace \([E, E + \Delta]\) are locally close to a Gibbs state.

(Dynamic) All initial states \(\psi_{\Pi,0}\) locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

The result

\[\| \mathcal{H}_{SB} \|_\infty \gg \text{gaps}(\mathcal{H}_0) \]
\[\| \mathcal{H}_{SB} \|_\infty \ll k_B T \ll \Delta \]

\[\langle E_k | \psi_0 | E_k \rangle \]
\[\Omega^B_\Delta (E) \]

\[\not= \]

\[\rightarrow \quad \text{“Theorem” 2 (Theorem 2 in [6])} \]

(Kinematic) Almost all pure states from a microcanonical subspace \([E, E + \Delta]\) are locally close to a Gibbs state.

(Dynamic) All initial states \(\psi_{\Pi,0}\) locally equilibrate towards a Gibbs state, even if they are initially far from equilibrium.

Conclusions
Conclusions

- There is **equilibration in closed quantum systems**.
Conclusions

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.
Conclusions

- There is **equilibration in closed quantum systems**.
- We can prove **thermalization** under quite natural assumptions.
- Quantum mechanics implies a **maximum entropy principle**.
Conclusions

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.
- Quantum mechanics implies a maximum entropy principle.

- How is this related to the GGE and ETH?
Conclusions

- There is **equilibration in closed quantum systems**.
- We can prove **thermalization** under quite natural assumptions.
- Quantum mechanics implies a **maximum entropy principle**.

- How is this related to the **GGE** and **ETH**?
- Can we capture the intuition behind **non-integrability** in a mathematically **precise definition**?
Conclusions

- There is equilibration in closed quantum systems.
- We can prove thermalization under quite natural assumptions.
- Quantum mechanics implies a maximum entropy principle.

- How is this related to the GGE and ETH?
- Can we capture the intuition behind non-integrability in a mathematically precise definition?
- How are non-integrability and thermalization related?
Collaborators

Arnau Riera Martin Kliesch Jens Eisert

Markus P. Müller
Thank you for your attention!

→ slides: www.cgogolin.de

