Under what conditions do quantum systems thermalize?

New insights from quantum information theory

Christian Gogolin, Arnau Riera, Markus Müller, and Jens Eisert

University of Potsdam

DPG March Meeting Dresden
Irreversibility from quantum many body dynamics
Irreversibility from quantum many body dynamics
Irreversibility from quantum many body dynamics

Under what conditions do quantum systems thermalize?

Irreversibility from unitary dynamics

Equilibrate?

Yes

No
Irreversibility from quantum many body dynamics

Under what conditions do quantum systems thermalize?

Irreversibility from unitary dynamics

Equilibrate?

Yes

No

Thermalize?

Yes

No

\(T \)

\(\overline{T} \)
Irreversibility from quantum many body dynamics

Under what conditions do quantum systems thermalize?

Yes

Quantum computer

No

Thermalize?

Yes

Equilibrate?

No

t

T

T

t
New foundation for statistical mechanics

- Thermodynamics
- Statistical Mechanics
- Second Law ergodicity equal a priory probabilities
- Classical Mechanics
New foundation for statistical mechanics

- Thermodynamics
- Statistical Mechanics
- Second Law, ergodicity, equal a priori probabilities
- Classical Mechanics
New foundation for statistical mechanics

- Thermodynamics
- Statistical Mechanics
 - Second Law ergodicity
 - equal a priori probabilities

Classical Mechanics
New foundation for statistical mechanics

Thermodynamics

Statistical Mechanics

Second Law ergodicity equal a priori probabilities

Classical Mechanics
New foundation for statistical mechanics

Thermodynamics

Statistical Mechanics

Second Law ergodicity equal a priori probabilities

Classical Mechanics
New foundation for statistical mechanics

Thermodynamics

Statistical Mechanics

Second Law ergodicity equal a priori probabilities

Classical Mechanics
New foundation for statistical mechanics

Thermodynamics

Statistical Mechanics
Under what conditions do quantum systems thermalize?

New foundation for statistical mechanics

Thermodynamics

Statistical Mechanics

Quantum Mechanics
Thermalization is a complicated process

Thermalization implies:
1. **Equilibration** [1, 2, 3]
2. **Subsystem initial state independence** [4]
3. **Weak bath state dependence** [5]
4. **Diagonal form of the subsystem equilibrium state** [6]
5. **Gibbs state** \(e^{-\beta \mathcal{H}} \) [3, 5]

Under what conditions do quantum systems thermalize?

Thermalization and quantum integrability

There is a common belief in the literature [7, 8, 9, 10, 11] …

| Non-integrable | \(\implies \) | Thermalization |
|----------------|-----------------|
| Integrable | \(\implies \) | No thermalization |

There is a common belief in the literature \cite{7, 8, 9, 10, 11} ... which is unfortunately not quite true.

\begin{center}
\begin{tabular}{cc}
Non-integrable & \Rightarrow & Thermalization \\
Integrable & \Rightarrow & No thermalization
\end{tabular}
\end{center}

\footnotesize
\begin{itemize}
 \item \cite{7} C. Kollath et. al PRL 98, (2007) 180601
 \item \cite{8} S. Manmana, S. Wessel, R. Noack, and A. Muramatsu, ibid. 98 (2007) 210405
 \item \cite{9} M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008) 854
 \item \cite{10} M. C. Banuls, J. I. Cirac, and M. B. Hastings, arXiv:1007.3957
 \item \cite{11} M. Rigol, PRL 103, (2009) 100403
\end{itemize}
Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [4]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [4]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

\[D(S, B) \geq D(S, B) - R(|\psi_1\rangle) - R(|\psi_2\rangle). \]

Corollary of Theorem 2 in [4]:

Let \(\{ |i\rangle \} \) be a basis for \(S \), then if \(\delta = \max_k \min_i D(\text{Tr} B |E_k\rangle \langle E_k|, |i\rangle \langle i|) \) is small, then for all \(|i\rangle \) and almost all \(|\psi_B\rangle \)

\[R(|i\rangle \otimes |\psi_B\rangle) \leq 4 \delta. \]

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [4]):

- Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.
- This can happen even in non-integrable systems.

\[D(\uparrow, \downarrow) \geq D(\uparrow, \downarrow) - R(\ket{\psi_1}) - R(\ket{\psi_2}). \]

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [4]):

Corollary of Theorem 2 in [4]:
Effective entanglement in the eigenbasis (for spin 1/2)

Let \(\{ |i\rangle \} \) be a basis for \(S \), then if

\[
\delta = \max_k \min_i D(\text{Tr}_B |E_k\rangle\langle E_k|, |i\rangle\langle i|)
\]

is small, then for all \(|i\rangle \) and almost all \(|\psi^B\rangle \)

\[
R(|i\rangle \otimes |\psi^B\rangle) \leq 4 \delta.
\]

\[
D(\uparrow, \downarrow) \geq D(\uparrow, \downarrow) - R(|\psi_1\rangle) - R(|\psi_2\rangle).
\]

Absence of thermalization in non integrable systems

Result (Theorem 1 and 2 in [4]):

- **Too little (geometric) entanglement in the energy eigenbasis prevents initial state independence.**
- **This can happen even in non-integrable systems.**

\[
\mathcal{D}(\uparrow, \downarrow) \geq \mathcal{D}(\uparrow, \downarrow) - R(|\psi_1\rangle) - R(|\psi_2\rangle).
\]

Conclusions and outlook

We have seen in this talk:

Non-integrability \(\Rightarrow \) Thermalization

Conclusions and outlook

We have seen in this talk:

Non-integrability \Rightarrow Thermalization

But there is more:

- Rigorous results on Equilibration [1, 2]
- A strong connection to decoherence [6]
- A quantum algorithm to prepare Gibbs states [5].
- Thermalization in exactly solvable models [12, 13]

Conclusions and outlook

We have seen in this talk:

Non-integrability $\not\Rightarrow$ Thermalization

But there is more:

- Rigorous results on Equilibration [1, 2]
- A strong connection to decoherence [6]
- A quantum algorithm to prepare Gibbs states [5]
- Thermalization in exactly solvable models [12, 13]

The major open question:

- Time scales. How long does it take to equilibrate?

Collaborators

Markus P. Müller
Arnau Riera
Jens Eisert
Peter Janotta
Haye Hinrichsen
Andreas Winter
Under what conditions do quantum systems thermalize?

References

Thank you for your attention!

slides: www.cgogolin.de