A new foundation for Statistical Physics Entaglement and the Second Law

Christian Gogolin

Universität Würzburg

2009-06-10

Thermodynamics

Thermodynamics

Thermodynamics

Statistical Mechanics

Thermodynamics

Statistical Mechanics

Thermodynamics

Statistical Mechanics

4

Thermodynamics

Statistical Mechanics

Second Law ergodicity equal a priory probabilities

Clausius

Heat generally can not spontaneously flow from a material at lower temperature to a material at higher temperature.

[1,en.wikipedia.org]

Clausius

Heat generally can not spontaneously flow from a material at lower temperature to a material at higher temperature.

Kelvin, Planck, Kinzel

It is impossible to convert heat completely into work in a cyclic process.

[1,en.wikipedia.org]

Clausius

Heat generally can not spontaneously flow from a material at lower temperature to a material at higher temperature.

Kelvin, Planck, Kinzel

It is impossible to convert heat completely into work in a cyclic process.

Boltzmann (H-Theorem)

The entropy in a closed system can not decrease. It stays constant only for reversible processes.

[1,en.wikipedia.org]

H-Theorem:

Thus, one may prove that, because of the atomic movement in systems consisting of arbitrarily many material points, there always exists a quantity which, due to these atomic movements, cannot increase, and this quantity agrees, up to a constant factor, exactly with the value [of] the well-known integral $\int \frac{\delta Q}{T}$.

This provides an analytical proof of the Second Law [...] we immediately reach the result that $\int \frac{\delta Q}{T}$ is in general negative and zero only in a limit case.

Time reversal objection (Loschmidt)

$$\vec{v} \rightarrow -\vec{v}$$

Recurrence objection (Ponicaré)

$$\xrightarrow{t} \dots \xrightarrow{t}$$

$$\xrightarrow{t} \dots \xrightarrow{t}$$

Recurrence objection (Ponicaré)

⇒ We need a probabilistic H-Theorem! (Ehrenfest)

Classical Mechanics

[2, 3]

Thermodynamics Statistical Mechanics Second Law ergodicity equal a priory probabilities Classical Mechanics

[2, 3]

Pure state quantum Statistical Mechanics . . .

- ... must be capable of:
 - reproducing results obtained from ensemble averages
 - explaining equilibration
 - explaining initial state independence
 -

Pure state quantum Statistical Mechanics . . .

- ... must be capable of:
 - reproducing results obtained from ensemble averages [2, 3]√
 - explaining equilibration
 - explaining initial state independence
 -

Pure state quantum Statistical Mechanics . . .

- ... must be capable of:
 - reproducing results obtained from ensemble averages [2, 3]√
 - explaining equilibration
 - explaining initial state independence
 -

Table of contents

- 1 Technical introduction
- 2 Setup
- 3 Equilibration
- 4 Initial state independence
- 5 Towards a probabilistic H-Theorem

Technical introduction

■ Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{P}(\mathcal{H})$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{P}(\mathcal{H})$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \qquad \psi = |\psi\rangle\langle\psi|$$

Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{P}(\mathcal{H})$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \qquad \psi = |\psi\rangle\langle\psi|$$
$$\operatorname{Tr}[\rho] = \sum_{i} \langle i|\rho|i\rangle = 1 \qquad \qquad \langle A\rangle_{\rho} = \operatorname{Tr}[A\rho]$$

Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{P}(\mathcal{H})$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \qquad \psi = |\psi\rangle\langle\psi|$$

$$\operatorname{Tr}[\rho] = \sum_{i} \langle i|\rho|i\rangle = 1 \qquad \qquad \langle A\rangle_{\rho} = \operatorname{Tr}[A\,\rho]$$

$$\rho_t = U_t\,\rho_0\,U_t^{\dagger} \qquad \qquad U_t = \mathrm{e}^{-\mathrm{i}\,\mathscr{H}\,t}$$

Pure Quantum Mechanics

$$|\psi\rangle \in \mathcal{P}(\mathcal{H})$$

$$\langle \psi | \psi \rangle = 1$$

$$|\psi_t\rangle = U_t |\psi_0\rangle$$

$$A = A^{\dagger}$$

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

$$U_t = e^{-i \mathcal{H} t}$$

$$\rho, \psi \in \mathcal{M}(\mathcal{H}) \qquad \qquad \psi = |\psi\rangle\langle\psi|$$

$$\operatorname{Tr}[\rho] = \sum_{i} \langle i|\rho|i\rangle = 1 \qquad \qquad \langle A\rangle_{\rho} = \operatorname{Tr}[A\,\rho]$$

$$\rho_t = U_t\,\rho_0\,U_t^{\dagger} \qquad \qquad U_t = e^{-i\,\mathscr{H}\,t}$$

mixtures:
$$\rho = p \psi_1 + (1-p) \psi_2$$

Trace distance

$$\mathcal{D}(\rho,\sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$

■ Trace distance

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$
$$= \max_{A \in \mathcal{M}} \langle A \rangle_{\rho} - \langle A \rangle_{\sigma}$$

■ Trace distance

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$
$$= \max_{A \in \mathcal{M}} \langle A \rangle_{\rho} - \langle A \rangle_{\sigma}$$

Effective dimension

$$d^{\text{eff}}(\rho) = \frac{1}{\text{Tr}(\rho^2)}$$

■ Trace distance

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$
$$= \max_{A \in \mathcal{M}} \langle A \rangle_{\rho} - \langle A \rangle_{\sigma}$$

Effective dimension

$$d^{\text{eff}}(\rho) = \frac{1}{\text{Tr}(\rho^2)} \qquad d^{\text{eff}}(\psi) = 1$$

Trace distance

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$
$$= \max_{A \in \mathcal{M}} \langle A \rangle_{\rho} - \langle A \rangle_{\sigma}$$

Effective dimension

$$d^{\text{eff}}(\rho) = \frac{1}{\text{Tr}(\rho^2)}$$
 $d^{\text{eff}}(\psi) = 1$ $d^{\text{eff}}(\frac{1}{d}) = d$

Trace distance

$$\mathcal{D}(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$
$$= \max_{A \in \mathcal{M}} \langle A \rangle_{\rho} - \langle A \rangle_{\sigma}$$

Effective dimension

$$d^{\text{eff}}(\rho) = \frac{1}{\text{Tr}(\rho^2)}$$
 $d^{\text{eff}}(\psi) = 1$ $d^{\text{eff}}(\frac{1}{d}) = d$

■ Time average

$$\omega = \langle \rho_t \rangle_t = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \rho_t \, dt$$

What is a random state?

Parametrization

$$|\psi\rangle = \sum_{i} c_{i} |i\rangle$$
 $\langle i|j\rangle = \delta_{ij}$
$$1 = \sum_{i} |c_{i}|^{2}$$
 $\langle \psi|\psi\rangle = 1$

What is a random state?

Parametrization

$$|\psi\rangle = \sum_{i} c_{i} |i\rangle$$
 $\langle i|j\rangle = \delta_{ij}$
$$1 = \sum_{i} |c_{i}|^{2}$$
 $\langle \psi|\psi\rangle = 1$

Independence from the chosen basis

$$\Pr\{|\psi\rangle\} \stackrel{!}{=} \Pr\{U\,|\psi\rangle\}$$

What is a random state?

Parametrization

$$|\psi\rangle = \sum_{i} c_{i} |i\rangle$$
 $\langle i|j\rangle = \delta_{ij}$
$$1 = \sum_{i} |c_{i}|^{2}$$
 $\langle \psi|\psi\rangle = 1$

Independence from the chosen basis

$$\Pr\{|\psi\rangle\} \stackrel{!}{=} \Pr\{U|\psi\rangle\}$$

Haar measure

- **2** Random U; $|\psi\rangle = U |0\rangle$

$$\rho \in \mathcal{M}(\mathcal{H})$$

$$\rho^S = \operatorname{Tr}_B \rho \qquad \rho^B = \operatorname{Tr}_S \rho$$

$$\rho \in \mathcal{M}(\mathcal{H})$$

$$\rho^S = \operatorname{Tr}_B \rho \qquad \rho^B = \operatorname{Tr}_S \rho$$

$$\operatorname{Tr}[(A_S \otimes \mathbb{1}_B)\rho] = \operatorname{Tr}[A_S \rho^S]$$

$$\rho \in \mathcal{M}(\mathcal{H})$$

$$\rho^S = \operatorname{Tr}_B \rho \qquad \rho^B = \operatorname{Tr}_S \rho$$

$$\operatorname{Tr}[(A_S\otimes \mathbb{1}_B)\rho] = \operatorname{Tr}[A_S \, \rho^S]$$

 $reduced\ state \rightarrow locally\ observable$

A very weak assumption

In the following we assume non-degenerate energy gaps.

Definition

A Hamiltonian has non-degenerate energy gaps iff:

$$E_k - E_l = E_m - E_n$$

$$\implies k = l \land m = n \text{ or } k = m \land l = n$$

Equilibration

Lemma 1

For every $\psi_0 \in \mathcal{P}(\mathcal{H})$

$$\langle \mathcal{D}(\rho_t^S, \omega^S) \rangle_t \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}(\omega)}}$$

where

$$\rho_t^S = \operatorname{Tr}_B \psi_t \qquad \qquad \omega^S = \langle \rho_t^S \rangle_t \qquad \qquad \omega = \langle \psi_t \rangle_t$$

Lemma 1

For every $\psi_0 \in \mathcal{P}(\mathcal{H})$

$$\langle \mathcal{D}(\rho_t^S, \omega^S) \rangle_t \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}(\omega)}}$$

where

$$\rho_t^S = \operatorname{Tr}_B \psi_t \qquad \qquad \omega^S = \langle \rho_t^S \rangle_t \qquad \qquad \omega = \langle \psi_t \rangle_t$$

 $\Longrightarrow \rho_t^S$ equilibrates if $d^{\mathrm{eff}}(\omega)$ is large.

Lemma 2

For random $\psi_0 \in \mathcal{P}(\mathcal{H})$

$$\Pr\left\{d^{\text{eff}}(\omega) < \frac{d}{4}\right\} \le 2 e^{-c\sqrt{d}}$$

Lemma 2

For random $\psi_0 \in \mathcal{P}(\mathcal{H})$

$$\Pr\left\{d^{\text{eff}}(\omega) < \frac{d}{4}\right\} \le 2 e^{-c\sqrt{d}}$$

 $\Longrightarrow d^{\mathrm{eff}}(\omega)$ is large if d is large.

Equilibration is generic

Lemma 1 + Lemma 2

If d is large ρ_t^S equilibrates for almost all initial states ψ_0 .

Equilibration is generic

Lemma 1 + Lemma 2

If d is large ρ_t^S equilibrates for almost all initial states ψ_0 .

Initial state independence

Entanglement produces disorder

Lemma 3

If almost all energy eigenstates are close to locally completely mixed

$$\operatorname{Tr}_B |E_k\rangle\langle E_k| \approx \frac{1}{d_S} \mathbb{1}_{d_S \times d_S}$$

almost all equilibrium states are close to locally completely mixed

$$\omega^S = \langle \rho_t^S \rangle_t \approx \frac{1}{d_S} \mathbb{1}_{d_S \times d_S}.$$

Random Hamiltonians are locally mixed

Lemma 4

Almost all eigenstates $|E_k\rangle$ of a random Hamiltonian on \mathcal{H} with $d_B\gg d_S$ are close to locally completely mixed in the sense that:

$$\Pr\left\{\forall k : \mathcal{D}(\operatorname{Tr}_{B}|E_{k})\langle E_{k}|, \frac{1}{d_{S}}\mathbb{1}_{d_{S}\times d_{S}}) \leq \frac{\epsilon}{d_{S}}\right\}$$
$$\geq 1 - 2d_{S}d_{B}\left(\frac{10d_{S}}{\epsilon}\right)^{2d_{S}} e^{-Cd_{B}\epsilon^{2}}$$

Toward a probabilistic H-Theorem

Lemma 1 subsystems equilibrate \Leftarrow effective dimension is high

Lemma 1 subsystems equilibrate ← effective dimension is high Lemma 2 random states have a high effective dimension

```
Lemma 1 subsystems equilibrate ← effective dimension is high

Lemma 2 random states have a high effective dimension

Lemma 3 initial state independence ← locally mixed energy eigenstates
```

```
Lemma 1 subsystems equilibrate ← effective dimension is high

Lemma 2 random states have a high effective dimension

Lemma 3 initial state independence ← locally mixed energy eigenstates

Lemma 4 random Hamiltonians have locally mixed energy eigenstates
```

What about the Second Law?

Probabilistic pseudo quantum H-Theorem

Almost all initial states of a large Quantum system of dimension d are such that under the time development induced by a generic Hamiltonian the states of all small subsystems with dimension $d_S \ll d$ are close to an equilibrium state for almost all times.

The equilibrium state is independent of the initial state and maximizes the local Von Neumann entropy.

■ Boltzmann's H-Theorem is about closed systems!

- Boltzmann's H-Theorem is about closed systems!
- Random initial states are unrealistic!

- Boltzmann's H-Theorem is about closed systems!
- Random initial states are unrealistic!
- Complete independence from the initial state is unrealistic!

- Boltzmann's H-Theorem is about closed systems!
- Random initial states are unrealistic!
- Complete independence from the initial state is unrealistic!
- Random Hamiltonians are unrealistic!

- Boltzmann's H-Theorem is about closed systems!
- Random initial states are unrealistic!
- Complete independence from the initial state is unrealistic!
- Random Hamiltonians are unrealistic!

All I want to say is that:

There is a generic tendency to maximize entropy.

Literatur

- J. Uffink, "Compendium of the foundations of classical statistical physics", http://philsci-archive.pitt.edu/archive/00002691/.
- [2] S. Lloyd, "Black holes, demons and the loss of coherence: How complex systems get information, and what they do with it",. PhD thesis, Rockefeller University, April, 1991.
- [3] S. Popescu, "Entanglement and the foundations of statistical mechanics", Nature Physics 2 (2006) no. 11, 754.
- [4] N. Linden, S. Popescu, A. J. Short, and A. Winter, "Quantum mechanical evolution towards thermal equilibrium", quant-ph/0511225.
- [5] P. Hayden, D. W. Leung, and A. Winter, "Aspects of generic entanglement", Communications in Mathematical Physics 265 (2006) 95, quant-ph/0407049v2.
 - → beamer slides: http://www.cgogolin.de

Thank you for your attention!