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What is wrong with the Second Law?

m Clausius
Heat generally can not spontaneously flow from a
material at lower temperature to a material at higher
temperature.

[1,en.wikipedia.org]
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What is wrong with the Second Law?

m Clausius
Heat generally can not spontaneously flow from a
material at lower temperature to a material at higher
temperature.

m Kelvin, Planck, Kinzel
It is impossible to convert heat completely into work in a
cyclic process.

m Boltzmann (H-Theorem)

The entropy in a closed system can not decrease. It
stays constant only for reversible processes.

[1,en.wikipedia.org]
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What is wrong with the Second Law?

H-Theorem:

Thus, one may prove that, because of the atomic movement
in systems consisting of arbitrarily many material points, there
always exists a quantity which, due to these atomic movements,
cannot increase, and this quantity agrees, up to a constant
factor, exactly with the value [of] the well-known integral [ ‘%Q.

This provides an analytical proof of the Second Law [...] we
immediately reach the result that [ %Q is in general negative
and zero only in a limit case.
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A new foundation for Statistical PhysicsEntaglement and the Second Law = Motivation
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% Time reversal objection (Loschmidt)
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% Recurrence objection (Ponicaré)

= We need a probabilistic H-Theorem! (Ehrenfest)

(1]
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Pure state quantum Statistical Mechanics . ..

... must be capable of:
reproducing results obtained from ensemble averages
explaining equilibration

L]
L]
m explaining initial state independence
L]
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Pure state quantum Statistical Mechanics . ..

... must be capable of:
reproducing results obtained from ensemble averages [2, 3]

explaining equilibration

explaining initial state independence
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A new foundation for Statistical PhysicsEntaglement and the Second Law = Technical introduction
Quantum Mechanics on one slide

m Pure Quantum Mechanics

) € P(H) A=At
(Yl) =1 (A)y = (Y| AlY)
[ve) = Ut [¢o) Uy=e ' 7t

m Include classical randomness

P, € M(H) ¥ =[P}
Tefp] = 3 (ileli) = 1 (4), = Tr[4]
,Ot:Utp()UtT Ut:e_i%ﬂt

mixtures: p =p1 + (1 —p) 1o
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Measures for distance and purity

m Trace distance
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Measures for distance and purity

m Trace distance

1
D(p,0) = 5 Trlp— o]

= %%<A>P - <A>0'

m Effective dimension

eff _
o) = Tr(p?)

m Time average
-

. 1
w={(p)y = lim — [ p;dt
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A new foundation for Statistical PhysicsEntaglement and the Second Law = Technical introduction

What is a random state?

m Parametrization

) = Zcz' |4)
1= Z|Ci|2

m Independence from the chosen basis

(il7) = 6ij

(YY) =1

Pr{|¢)} = Pr{U |3}

Haar measure

¢; normal distributed and
normalize

Random U; |¢) = U |0)
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A new foundation for Statistical PhysicsEntaglement and the Second Law | Setup

Setup

H = Hs ®Hp p € ST

p°=Trgp  p’ =Trgp

Tr[(As ® 1p)p] = Tr[As p°]

reduced state — locally observable
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A new foundation for Statistical PhysicsEntaglement and the Second Law | Setup
A very weak assumption

In the following we assume non—degenerate energy gaps.

Definition

A Hamiltonian has non—degenerate energy gaps iff:
E,.—E=E,—E,

—k=IAm=nork=mAl=n
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Two lemmas

Lemma 1

For every 1y € P(H)

where

pi = Trp

w = (Y1)t
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Two lemmas

Lemma 1

For every 1y € P(H)

where

pi = Trp w® = (p )y w = (Pt

= p? equilibrates if d*f(w) is large.
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Two lemmas

Lemma 2

For random g € P(H)

— df(w) is large if d is large.
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Equilibration is generic

Lemma 1 + Lemma 2

If d is large pf equilibrates for almost all initial states 1)y.
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Equilibration is generic

Lemma 1 + Lemma 2

If d is large pf equilibrates for almost all initial states 1)y.

D(p},w?)

A A A A AnA I\
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A new foundation for Statistical PhysicsEntaglement and the Second Law | Initial state independence

Entanglement produces disorder

Lemma 3

If almost all energy eigenstates are close to locally completely mixed

1
TI‘B |Ek><Ek| ~ @]ldsts

almost all equilibrium states are close to locally completely mixed

1
wS = <Pf>t ~ df]ldsxds.
S
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A new foundation for Statistical PhysicsEntaglement and the Second Law | Initial state independence

Random Hamiltonians are locally mixed

Lemma 4

Almost all eigenstates |E};) of a random Hamiltonian on H with
dp > dg are close to locally completely mixed in the sense that:

€
Pr {Vk D(TI‘B |Ek><Ek’ ]ldsxdg) < ds}

10dg %%s
Zl—2dsdB< S) e Cdpeé

€
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A new foundation for Statistical PhysicsEntaglement and the Second Law = Towards a probabilistic H-Theorem
What have we learned so far?

Lemma 1 subsystems equilibrate <= effective dimension is high
Lemma 2 random states have a high effective dimension
Lemma 3 initial state independence < locally mixed energy eigenstates

Lemma 4 random Hamiltonians have locally mixed energy eigenstates
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A new foundation for Statistical PhysicsEntaglement and the Second Law = Towards a probabilistic H-Theorem

What about the Second Law?

Probabilistic pseudo quantum H-Theorem

Almost all initial states of a large Quantum system of dimension d are
such that under the time development induced by a generic Hamiltonian
the states of all small subsystems with dimension dg < d are close to an

equilibrium state for almost all times.
The equilibrium state is independent of the initial state and maximizes

the local Von Neumann entropy.
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Possible objections

m Boltzmann's H-Theorem is about closed systems!
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A new foundation for Statistical PhysicsEntaglement and the Second Law = Towards a probabilistic H-Theorem
Possible objections

Boltzmann's H-Theorem is about closed systems!
Random initial states are unrealistic!

Complete independence from the initial state is unrealistic!

Random Hamiltonians are unrealistic!

All I want to say is that:

There is a generic tendency to maximize entropy.
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A new foundation for Statistical PhysicsEntaglement and the Second Law = Towards a probabilistic H-Theorem
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